Properties

Label 4-20096-1.1-c1e2-0-3
Degree $4$
Conductor $20096$
Sign $1$
Analytic cond. $1.28133$
Root an. cond. $1.06393$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4·3-s + 4-s − 3·5-s + 4·6-s − 4·7-s − 8-s + 7·9-s + 3·10-s − 2·11-s − 4·12-s + 4·14-s + 12·15-s + 16-s − 6·17-s − 7·18-s − 6·19-s − 3·20-s + 16·21-s + 2·22-s − 4·23-s + 4·24-s − 25-s − 4·27-s − 4·28-s − 12·30-s − 10·31-s + ⋯
L(s)  = 1  − 0.707·2-s − 2.30·3-s + 1/2·4-s − 1.34·5-s + 1.63·6-s − 1.51·7-s − 0.353·8-s + 7/3·9-s + 0.948·10-s − 0.603·11-s − 1.15·12-s + 1.06·14-s + 3.09·15-s + 1/4·16-s − 1.45·17-s − 1.64·18-s − 1.37·19-s − 0.670·20-s + 3.49·21-s + 0.426·22-s − 0.834·23-s + 0.816·24-s − 1/5·25-s − 0.769·27-s − 0.755·28-s − 2.19·30-s − 1.79·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20096 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(20096\)    =    \(2^{7} \cdot 157\)
Sign: $1$
Analytic conductor: \(1.28133\)
Root analytic conductor: \(1.06393\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 20096,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
157$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 5 T + p T^{2} ) \)
good3$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 2 T - 5 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
17$D_{4}$ \( 1 + 6 T + 31 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 6 T + p T^{2} + 6 p T^{3} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$D_{4}$ \( 1 + 10 T + 77 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 3 T + 10 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 4 T + 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 12 T + 103 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$D_{4}$ \( 1 + 10 T + 51 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 4 T - 41 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 118 T^{2} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 6 T + 46 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 15 T + 142 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.1925906223, −16.0442867886, −15.6603680254, −15.1140297945, −14.6534849715, −13.3746326883, −13.2846525045, −12.4757510971, −12.2005264823, −11.9014834355, −11.1775831333, −10.9072831040, −10.6623549922, −10.0000060428, −9.36610364541, −8.70837041678, −8.10736872113, −7.31121650737, −6.85947716005, −6.36139059159, −5.84128502965, −5.32463388803, −4.22679973040, −3.84155961266, −2.44812941182, 0, 0, 2.44812941182, 3.84155961266, 4.22679973040, 5.32463388803, 5.84128502965, 6.36139059159, 6.85947716005, 7.31121650737, 8.10736872113, 8.70837041678, 9.36610364541, 10.0000060428, 10.6623549922, 10.9072831040, 11.1775831333, 11.9014834355, 12.2005264823, 12.4757510971, 13.2846525045, 13.3746326883, 14.6534849715, 15.1140297945, 15.6603680254, 16.0442867886, 16.1925906223

Graph of the $Z$-function along the critical line