Properties

Label 4-14e2-1.1-c1e2-0-0
Degree $4$
Conductor $196$
Sign $1$
Analytic cond. $0.0124971$
Root an. cond. $0.334350$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 4·3-s + 3·4-s + 8·6-s + 2·7-s − 4·8-s + 6·9-s − 12·12-s − 8·13-s − 4·14-s + 5·16-s + 12·17-s − 12·18-s + 4·19-s − 8·21-s + 16·24-s − 10·25-s + 16·26-s + 4·27-s + 6·28-s − 12·29-s − 8·31-s − 6·32-s − 24·34-s + 18·36-s + 4·37-s − 8·38-s + ⋯
L(s)  = 1  − 1.41·2-s − 2.30·3-s + 3/2·4-s + 3.26·6-s + 0.755·7-s − 1.41·8-s + 2·9-s − 3.46·12-s − 2.21·13-s − 1.06·14-s + 5/4·16-s + 2.91·17-s − 2.82·18-s + 0.917·19-s − 1.74·21-s + 3.26·24-s − 2·25-s + 3.13·26-s + 0.769·27-s + 1.13·28-s − 2.22·29-s − 1.43·31-s − 1.06·32-s − 4.11·34-s + 3·36-s + 0.657·37-s − 1.29·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.0124971\)
Root analytic conductor: \(0.334350\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 196,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1090476651\)
\(L(\frac12)\) \(\approx\) \(0.1090476651\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
7$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.5800270198, −19.5800270198, −18.2120541317, −18.2120541317, −17.2128532162, −17.2128532162, −16.3370810014, −16.3370810014, −14.6077730657, −14.6077730657, −12.3052609901, −12.3052609901, −11.2313614144, −11.2313614144, −9.76554711946, −9.76554711946, −7.57571100089, −7.57571100089, −5.57928681743, −5.57928681743, 5.57928681743, 5.57928681743, 7.57571100089, 7.57571100089, 9.76554711946, 9.76554711946, 11.2313614144, 11.2313614144, 12.3052609901, 12.3052609901, 14.6077730657, 14.6077730657, 16.3370810014, 16.3370810014, 17.2128532162, 17.2128532162, 18.2120541317, 18.2120541317, 19.5800270198, 19.5800270198

Graph of the $Z$-function along the critical line