Properties

Label 4-1637-1.1-c1e2-0-0
Degree $4$
Conductor $1637$
Sign $-1$
Analytic cond. $0.104376$
Root an. cond. $0.568395$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 2·4-s − 4·5-s + 4·6-s − 4·8-s + 8·10-s + 11-s − 4·12-s − 13-s + 8·15-s + 8·16-s − 17-s − 8·20-s − 2·22-s − 3·23-s + 8·24-s + 6·25-s + 2·26-s + 2·27-s + 3·29-s − 16·30-s − 6·31-s − 8·32-s − 2·33-s + 2·34-s + 37-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.15·3-s + 4-s − 1.78·5-s + 1.63·6-s − 1.41·8-s + 2.52·10-s + 0.301·11-s − 1.15·12-s − 0.277·13-s + 2.06·15-s + 2·16-s − 0.242·17-s − 1.78·20-s − 0.426·22-s − 0.625·23-s + 1.63·24-s + 6/5·25-s + 0.392·26-s + 0.384·27-s + 0.557·29-s − 2.92·30-s − 1.07·31-s − 1.41·32-s − 0.348·33-s + 0.342·34-s + 0.164·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1637 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1637 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1637\)
Sign: $-1$
Analytic conductor: \(0.104376\)
Root analytic conductor: \(0.568395\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1637,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad1637$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 44 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
3$D_{4}$ \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - T + T^{2} - p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + T + 7 T^{2} + p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + T + p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 3 T + p T^{2} + 3 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 3 T + 43 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 6 T + 34 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - T - 20 T^{2} - p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 12 T + 110 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 4 T + 78 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$D_{4}$ \( 1 + 5 T + 41 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 6 T - 2 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 8 T + 62 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 11 T + 103 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 15 T + 182 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 7 T + 88 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - T + 6 T^{2} - p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 6 T + 16 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 4 T + 102 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.4127301786, −18.8652734850, −18.1575153949, −17.9504441633, −17.3170342178, −16.8882757907, −16.2287255539, −15.9442576661, −15.2600498235, −14.7924726960, −14.0900448940, −12.7630822331, −12.2774990606, −11.8274600643, −11.2209241533, −11.0486382202, −10.0395941485, −9.33596011448, −8.66686807455, −7.94841399901, −7.50797586611, −6.45240303254, −5.80324006253, −4.53626004875, −3.32634422552, 0, 3.32634422552, 4.53626004875, 5.80324006253, 6.45240303254, 7.50797586611, 7.94841399901, 8.66686807455, 9.33596011448, 10.0395941485, 11.0486382202, 11.2209241533, 11.8274600643, 12.2774990606, 12.7630822331, 14.0900448940, 14.7924726960, 15.2600498235, 15.9442576661, 16.2287255539, 16.8882757907, 17.3170342178, 17.9504441633, 18.1575153949, 18.8652734850, 19.4127301786

Graph of the $Z$-function along the critical line