| L(s) = 1 | − 3-s − 5-s − 2·9-s + 8·13-s + 15-s + 8·17-s − 4·19-s + 8·23-s − 2·25-s + 2·27-s − 12·29-s + 4·31-s + 8·37-s − 8·39-s + 12·41-s − 4·43-s + 2·45-s + 8·47-s − 14·49-s − 8·51-s + 12·53-s + 4·57-s + 8·59-s − 12·61-s − 8·65-s − 12·67-s − 8·69-s + ⋯ |
| L(s) = 1 | − 0.577·3-s − 0.447·5-s − 2/3·9-s + 2.21·13-s + 0.258·15-s + 1.94·17-s − 0.917·19-s + 1.66·23-s − 2/5·25-s + 0.384·27-s − 2.22·29-s + 0.718·31-s + 1.31·37-s − 1.28·39-s + 1.87·41-s − 0.609·43-s + 0.298·45-s + 1.16·47-s − 2·49-s − 1.12·51-s + 1.64·53-s + 0.529·57-s + 1.04·59-s − 1.53·61-s − 0.992·65-s − 1.46·67-s − 0.963·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 15360 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15360 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.8794806064\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8794806064\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.0387420541, −15.7488207479, −15.0277756685, −14.5765256398, −14.4078514439, −13.2768755254, −13.2686564900, −12.7887803972, −11.7668014526, −11.7666126827, −10.9716317562, −10.9076921437, −10.1922765354, −9.32846754645, −8.95538623117, −8.30430859978, −7.77199473906, −7.22612323208, −6.22207440469, −5.87146418849, −5.45564722344, −4.33436868576, −3.67478222653, −2.93279961257, −1.21912253618,
1.21912253618, 2.93279961257, 3.67478222653, 4.33436868576, 5.45564722344, 5.87146418849, 6.22207440469, 7.22612323208, 7.77199473906, 8.30430859978, 8.95538623117, 9.32846754645, 10.1922765354, 10.9076921437, 10.9716317562, 11.7666126827, 11.7668014526, 12.7887803972, 13.2686564900, 13.2768755254, 14.4078514439, 14.5765256398, 15.0277756685, 15.7488207479, 16.0387420541