Properties

Label 4-15360-1.1-c1e2-0-0
Degree $4$
Conductor $15360$
Sign $1$
Analytic cond. $0.979366$
Root an. cond. $0.994801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 2·9-s + 8·13-s + 15-s + 8·17-s − 4·19-s + 8·23-s − 2·25-s + 2·27-s − 12·29-s + 4·31-s + 8·37-s − 8·39-s + 12·41-s − 4·43-s + 2·45-s + 8·47-s − 14·49-s − 8·51-s + 12·53-s + 4·57-s + 8·59-s − 12·61-s − 8·65-s − 12·67-s − 8·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 2/3·9-s + 2.21·13-s + 0.258·15-s + 1.94·17-s − 0.917·19-s + 1.66·23-s − 2/5·25-s + 0.384·27-s − 2.22·29-s + 0.718·31-s + 1.31·37-s − 1.28·39-s + 1.87·41-s − 0.609·43-s + 0.298·45-s + 1.16·47-s − 2·49-s − 1.12·51-s + 1.64·53-s + 0.529·57-s + 1.04·59-s − 1.53·61-s − 0.992·65-s − 1.46·67-s − 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15360 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15360 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15360\)    =    \(2^{10} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(0.979366\)
Root analytic conductor: \(0.994801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15360,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8794806064\)
\(L(\frac12)\) \(\approx\) \(0.8794806064\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
5$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
good7$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.7.a_o
11$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.11.a_w
13$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.13.ai_bm
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.17.ai_bu
19$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.19.e_bm
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.23.ai_bu
29$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.29.m_da
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) 2.31.ae_ck
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.37.ai_cc
41$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.41.am_dy
43$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.43.e_di
47$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.47.ai_dq
53$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.53.am_da
59$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.59.ai_eo
61$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.61.m_fm
67$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.67.m_fe
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.71.ai_fm
73$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.73.u_iw
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.79.m_gc
83$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.83.e_gk
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.89.e_bm
97$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.97.au_iw
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.0387420541, −15.7488207479, −15.0277756685, −14.5765256398, −14.4078514439, −13.2768755254, −13.2686564900, −12.7887803972, −11.7668014526, −11.7666126827, −10.9716317562, −10.9076921437, −10.1922765354, −9.32846754645, −8.95538623117, −8.30430859978, −7.77199473906, −7.22612323208, −6.22207440469, −5.87146418849, −5.45564722344, −4.33436868576, −3.67478222653, −2.93279961257, −1.21912253618, 1.21912253618, 2.93279961257, 3.67478222653, 4.33436868576, 5.45564722344, 5.87146418849, 6.22207440469, 7.22612323208, 7.77199473906, 8.30430859978, 8.95538623117, 9.32846754645, 10.1922765354, 10.9076921437, 10.9716317562, 11.7666126827, 11.7668014526, 12.7887803972, 13.2686564900, 13.2768755254, 14.4078514439, 14.5765256398, 15.0277756685, 15.7488207479, 16.0387420541

Graph of the $Z$-function along the critical line