| L(s) = 1 | + 4-s − 4·5-s + 2·7-s − 5·9-s − 4·11-s + 4·13-s + 16-s + 6·17-s − 4·20-s + 2·23-s + 6·25-s + 2·28-s + 4·29-s − 12·31-s − 8·35-s − 5·36-s − 8·41-s + 12·43-s − 4·44-s + 20·45-s + 8·47-s − 7·49-s + 4·52-s − 4·53-s + 16·55-s + 24·59-s − 8·61-s + ⋯ |
| L(s) = 1 | + 1/2·4-s − 1.78·5-s + 0.755·7-s − 5/3·9-s − 1.20·11-s + 1.10·13-s + 1/4·16-s + 1.45·17-s − 0.894·20-s + 0.417·23-s + 6/5·25-s + 0.377·28-s + 0.742·29-s − 2.15·31-s − 1.35·35-s − 5/6·36-s − 1.24·41-s + 1.82·43-s − 0.603·44-s + 2.98·45-s + 1.16·47-s − 49-s + 0.554·52-s − 0.549·53-s + 2.15·55-s + 3.12·59-s − 1.02·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.5162973993\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5162973993\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.5389705376, −18.7224768825, −18.6052503005, −17.6870194097, −17.2033309380, −16.2774200481, −16.2230215667, −15.5135452227, −15.0017429576, −14.3734863297, −14.0221692267, −12.9067116798, −12.3882574259, −11.6151508324, −11.2480762920, −10.9885026417, −10.0989747998, −8.68441372039, −8.40848690901, −7.73591843743, −7.25038064773, −5.81027585653, −5.28069074518, −3.86057015395, −2.99432139105,
2.99432139105, 3.86057015395, 5.28069074518, 5.81027585653, 7.25038064773, 7.73591843743, 8.40848690901, 8.68441372039, 10.0989747998, 10.9885026417, 11.2480762920, 11.6151508324, 12.3882574259, 12.9067116798, 14.0221692267, 14.3734863297, 15.0017429576, 15.5135452227, 16.2230215667, 16.2774200481, 17.2033309380, 17.6870194097, 18.6052503005, 18.7224768825, 19.5389705376