Properties

Label 4-1403-1.1-c1e2-0-0
Degree $4$
Conductor $1403$
Sign $-1$
Analytic cond. $0.0894564$
Root an. cond. $0.546893$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 2·4-s − 2·5-s + 6·6-s − 7-s − 4·8-s + 4·9-s + 4·10-s − 3·11-s − 6·12-s − 3·13-s + 2·14-s + 6·15-s + 8·16-s + 3·17-s − 8·18-s + 5·19-s − 4·20-s + 3·21-s + 6·22-s − 3·23-s + 12·24-s + 2·25-s + 6·26-s − 6·27-s − 2·28-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.73·3-s + 4-s − 0.894·5-s + 2.44·6-s − 0.377·7-s − 1.41·8-s + 4/3·9-s + 1.26·10-s − 0.904·11-s − 1.73·12-s − 0.832·13-s + 0.534·14-s + 1.54·15-s + 2·16-s + 0.727·17-s − 1.88·18-s + 1.14·19-s − 0.894·20-s + 0.654·21-s + 1.27·22-s − 0.625·23-s + 2.44·24-s + 2/5·25-s + 1.17·26-s − 1.15·27-s − 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1403 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1403 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1403\)    =    \(23 \cdot 61\)
Sign: $-1$
Analytic conductor: \(0.0894564\)
Root analytic conductor: \(0.546893\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1403,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad23$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 2 T + p T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 6 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
3$C_4$ \( 1 + p T + 5 T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$D_{4}$ \( 1 + T + p T^{2} + p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 3 T + 15 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 3 T + 21 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 3 T + 35 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 5 T + 22 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$D_{4}$ \( 1 + 8 T + 50 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + T - 56 T^{2} + p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 10 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 3 T + 57 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - T + 18 T^{2} - p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - T + 13 T^{2} - p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 7 T + 32 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 9 T + 106 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 2 T + 30 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 6 T + 66 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 3 T - 3 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 17 T + 183 T^{2} - 17 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + T + 18 T^{2} + p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.3511590000, −19.0280637683, −18.3365526062, −18.0470193680, −17.7126558399, −16.8509857956, −16.7002367046, −16.1298215250, −15.5338339458, −15.0925819871, −14.2368020772, −13.1290129319, −12.2983097321, −12.0533221795, −11.5672886058, −10.8650909748, −10.2321024076, −9.69221054347, −9.00337710612, −7.84992525454, −7.61663888445, −6.56642311068, −5.70429225088, −5.08881624682, −3.33741085275, 0, 3.33741085275, 5.08881624682, 5.70429225088, 6.56642311068, 7.61663888445, 7.84992525454, 9.00337710612, 9.69221054347, 10.2321024076, 10.8650909748, 11.5672886058, 12.0533221795, 12.2983097321, 13.1290129319, 14.2368020772, 15.0925819871, 15.5338339458, 16.1298215250, 16.7002367046, 16.8509857956, 17.7126558399, 18.0470193680, 18.3365526062, 19.0280637683, 19.3511590000

Graph of the $Z$-function along the critical line