Properties

Label 4-1312-1.1-c1e2-0-1
Degree $4$
Conductor $1312$
Sign $1$
Analytic cond. $0.0836542$
Root an. cond. $0.537801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·5-s − 2·6-s + 8-s − 2·10-s − 2·11-s − 2·12-s + 4·15-s + 16-s + 2·17-s + 2·19-s − 2·20-s − 2·22-s + 4·23-s − 2·24-s − 2·25-s + 2·27-s − 2·29-s + 4·30-s + 4·31-s + 32-s + 4·33-s + 2·34-s + 2·37-s + 2·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.894·5-s − 0.816·6-s + 0.353·8-s − 0.632·10-s − 0.603·11-s − 0.577·12-s + 1.03·15-s + 1/4·16-s + 0.485·17-s + 0.458·19-s − 0.447·20-s − 0.426·22-s + 0.834·23-s − 0.408·24-s − 2/5·25-s + 0.384·27-s − 0.371·29-s + 0.730·30-s + 0.718·31-s + 0.176·32-s + 0.696·33-s + 0.342·34-s + 0.328·37-s + 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1312 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1312 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1312\)    =    \(2^{5} \cdot 41\)
Sign: $1$
Analytic conductor: \(0.0836542\)
Root analytic conductor: \(0.537801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1312,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5389915528\)
\(L(\frac12)\) \(\approx\) \(0.5389915528\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
41$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
good3$D_{4}$ \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 + 2 T + 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 2 T + 8 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$D_{4}$ \( 1 - 2 T + 8 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
29$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$D_{4}$ \( 1 - 2 T - 18 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 6 T + 32 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
79$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$D_{4}$ \( 1 + 8 T + 94 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 10 T + 18 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.6599673796, −18.8257037435, −18.6538819312, −17.7314598952, −17.1368418682, −16.8899209644, −15.9977541843, −15.7799166504, −15.1674772702, −14.4724742836, −13.8501037621, −13.0775734455, −12.5401203308, −11.8438109868, −11.4913322601, −10.9960866060, −10.2918633816, −9.41372745718, −8.26116678365, −7.64511681208, −6.82215132425, −5.85901766872, −5.29163110264, −4.35018172500, −3.12239061990, 3.12239061990, 4.35018172500, 5.29163110264, 5.85901766872, 6.82215132425, 7.64511681208, 8.26116678365, 9.41372745718, 10.2918633816, 10.9960866060, 11.4913322601, 11.8438109868, 12.5401203308, 13.0775734455, 13.8501037621, 14.4724742836, 15.1674772702, 15.7799166504, 15.9977541843, 16.8899209644, 17.1368418682, 17.7314598952, 18.6538819312, 18.8257037435, 19.6599673796

Graph of the $Z$-function along the critical line