Properties

Label 4-1216-1.1-c1e2-0-0
Degree $4$
Conductor $1216$
Sign $1$
Analytic cond. $0.0775332$
Root an. cond. $0.527681$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 4·5-s − 6-s + 7-s − 8-s + 9-s + 4·10-s + 12-s − 5·13-s − 14-s − 4·15-s + 16-s − 3·17-s − 18-s + 3·19-s − 4·20-s + 21-s + 23-s − 24-s + 6·25-s + 5·26-s + 4·27-s + 28-s + 3·29-s + 4·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 1.78·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 1.26·10-s + 0.288·12-s − 1.38·13-s − 0.267·14-s − 1.03·15-s + 1/4·16-s − 0.727·17-s − 0.235·18-s + 0.688·19-s − 0.894·20-s + 0.218·21-s + 0.208·23-s − 0.204·24-s + 6/5·25-s + 0.980·26-s + 0.769·27-s + 0.188·28-s + 0.557·29-s + 0.730·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $1$
Analytic conductor: \(0.0775332\)
Root analytic conductor: \(0.527681\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1216,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4064521914\)
\(L(\frac12)\) \(\approx\) \(0.4064521914\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
19$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 2 T + p T^{2} ) \)
good3$C_2$$\times$$C_2$ \( ( 1 - p T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
17$D_{4}$ \( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - T + 10 T^{2} - p T^{3} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 8 T + 30 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$D_{4}$ \( 1 + T + 4 T^{2} + p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 3 T + 52 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$D_{4}$ \( 1 + 11 T + 72 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 5 T + 24 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$D_{4}$ \( 1 - 18 T + 202 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.6470521258, −19.1983346540, −18.8138416831, −18.0339280685, −17.5824210060, −16.8343970233, −16.2940991954, −15.5725412197, −15.3743062854, −14.7834792262, −14.1505771079, −13.3619212628, −12.4215030100, −11.8651183180, −11.6362096375, −10.6602566748, −10.0971312048, −9.13832703823, −8.56559477720, −7.76746543474, −7.47625192182, −6.65624212333, −4.99382097136, −4.10508156552, −2.81493669109, 2.81493669109, 4.10508156552, 4.99382097136, 6.65624212333, 7.47625192182, 7.76746543474, 8.56559477720, 9.13832703823, 10.0971312048, 10.6602566748, 11.6362096375, 11.8651183180, 12.4215030100, 13.3619212628, 14.1505771079, 14.7834792262, 15.3743062854, 15.5725412197, 16.2940991954, 16.8343970233, 17.5824210060, 18.0339280685, 18.8138416831, 19.1983346540, 19.6470521258

Graph of the $Z$-function along the critical line