Properties

Label 4-11529-1.1-c1e2-0-0
Degree $4$
Conductor $11529$
Sign $1$
Analytic cond. $0.735099$
Root an. cond. $0.925947$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 3-s + 4·4-s − 4·5-s + 3·6-s − 5·7-s − 3·8-s − 2·9-s + 12·10-s − 2·11-s − 4·12-s − 13-s + 15·14-s + 4·15-s + 3·16-s − 7·17-s + 6·18-s − 16·20-s + 5·21-s + 6·22-s − 6·23-s + 3·24-s + 5·25-s + 3·26-s + 5·27-s − 20·28-s + 6·29-s + ⋯
L(s)  = 1  − 2.12·2-s − 0.577·3-s + 2·4-s − 1.78·5-s + 1.22·6-s − 1.88·7-s − 1.06·8-s − 2/3·9-s + 3.79·10-s − 0.603·11-s − 1.15·12-s − 0.277·13-s + 4.00·14-s + 1.03·15-s + 3/4·16-s − 1.69·17-s + 1.41·18-s − 3.57·20-s + 1.09·21-s + 1.27·22-s − 1.25·23-s + 0.612·24-s + 25-s + 0.588·26-s + 0.962·27-s − 3.77·28-s + 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11529 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11529 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11529\)    =    \(3^{3} \cdot 7 \cdot 61\)
Sign: $1$
Analytic conductor: \(0.735099\)
Root analytic conductor: \(0.925947\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 11529,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T + p T^{2} \)
7$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 4 T + p T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
good2$C_2^2$ \( 1 + 3 T + 5 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 4 T + 11 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$D_{4}$ \( 1 + T - 5 T^{2} + p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 7 T + 43 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 6 T + 29 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - T - 12 T^{2} - p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 3 T + 37 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - T + 15 T^{2} - p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - T + 47 T^{2} - p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 16 T + 152 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + T + 103 T^{2} + p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 3 T - 8 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 3 T + 29 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 9 T + 139 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 2 T + 40 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 21 T + 285 T^{2} + 21 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.8527089449, −16.4813354792, −16.0981582693, −15.7493724990, −15.4026936900, −14.8427584626, −13.8686657368, −13.3703590687, −12.6027180033, −12.1501412566, −11.9067517193, −10.9651024459, −10.8466900311, −10.2015961861, −9.56999253132, −9.17611646621, −8.60108098149, −8.05892319427, −7.70035215600, −6.86128105695, −6.46577065804, −5.64411925089, −4.44444096366, −3.60920755098, −2.70035849418, 0, 0, 2.70035849418, 3.60920755098, 4.44444096366, 5.64411925089, 6.46577065804, 6.86128105695, 7.70035215600, 8.05892319427, 8.60108098149, 9.17611646621, 9.56999253132, 10.2015961861, 10.8466900311, 10.9651024459, 11.9067517193, 12.1501412566, 12.6027180033, 13.3703590687, 13.8686657368, 14.8427584626, 15.4026936900, 15.7493724990, 16.0981582693, 16.4813354792, 16.8527089449

Graph of the $Z$-function along the critical line