Properties

Label 4-1077-1.1-c1e2-0-1
Degree $4$
Conductor $1077$
Sign $-1$
Analytic cond. $0.0686704$
Root an. cond. $0.511908$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 4-s − 3·5-s + 6·6-s − 7-s + 4·9-s + 6·10-s + 2·11-s − 3·12-s − 2·13-s + 2·14-s + 9·15-s + 16-s − 3·17-s − 8·18-s + 19-s − 3·20-s + 3·21-s − 4·22-s − 4·23-s + 25-s + 4·26-s − 28-s − 6·29-s − 18·30-s − 31-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.73·3-s + 1/2·4-s − 1.34·5-s + 2.44·6-s − 0.377·7-s + 4/3·9-s + 1.89·10-s + 0.603·11-s − 0.866·12-s − 0.554·13-s + 0.534·14-s + 2.32·15-s + 1/4·16-s − 0.727·17-s − 1.88·18-s + 0.229·19-s − 0.670·20-s + 0.654·21-s − 0.852·22-s − 0.834·23-s + 1/5·25-s + 0.784·26-s − 0.188·28-s − 1.11·29-s − 3.28·30-s − 0.179·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1077 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1077 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1077\)    =    \(3 \cdot 359\)
Sign: $-1$
Analytic conductor: \(0.0686704\)
Root analytic conductor: \(0.511908\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1077,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 2 T + p T^{2} ) \)
359$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 8 T + p T^{2} ) \)
good2$D_{4}$ \( 1 + p T + 3 T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 3 T + 8 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + T + 6 T^{2} + p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$D_{4}$ \( 1 + 3 T - 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - T + 10 T^{2} - p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 4 T - 2 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$D_{4}$ \( 1 + T + 12 T^{2} + p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 4 T + 2 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
47$D_{4}$ \( 1 + 4 T + 42 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 62 T^{2} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 3 T + 34 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 14 T + 114 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 8 T + 34 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 13 T + 174 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - T - 12 T^{2} - p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 8 T + 142 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + T - 30 T^{2} + p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 16 T + 154 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.9792106538, −19.3768544424, −18.9087295598, −18.3724983167, −17.8207373097, −17.4724129722, −16.9514753465, −16.4066464564, −16.0299464838, −15.3482491336, −14.7611109666, −13.7536323190, −12.8078703900, −12.0522309383, −11.8676959823, −11.1352738890, −10.7006019347, −9.70008827668, −9.33802546280, −8.32296493864, −7.71918412015, −6.80397864306, −6.08591447925, −4.96180986609, −3.87679222455, 0, 3.87679222455, 4.96180986609, 6.08591447925, 6.80397864306, 7.71918412015, 8.32296493864, 9.33802546280, 9.70008827668, 10.7006019347, 11.1352738890, 11.8676959823, 12.0522309383, 12.8078703900, 13.7536323190, 14.7611109666, 15.3482491336, 16.0299464838, 16.4066464564, 16.9514753465, 17.4724129722, 17.8207373097, 18.3724983167, 18.9087295598, 19.3768544424, 19.9792106538

Graph of the $Z$-function along the critical line