Properties

Label 2-972-1.1-c1-0-5
Degree $2$
Conductor $972$
Sign $1$
Analytic cond. $7.76145$
Root an. cond. $2.78593$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·7-s + 5·13-s − 7·19-s − 5·25-s + 11·31-s − 37-s + 5·43-s + 18·49-s + 14·61-s − 16·67-s − 10·73-s + 17·79-s + 25·91-s − 19·97-s + 20·103-s − 19·109-s + ⋯
L(s)  = 1  + 1.88·7-s + 1.38·13-s − 1.60·19-s − 25-s + 1.97·31-s − 0.164·37-s + 0.762·43-s + 18/7·49-s + 1.79·61-s − 1.95·67-s − 1.17·73-s + 1.91·79-s + 2.62·91-s − 1.92·97-s + 1.97·103-s − 1.81·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 972 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 972 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(972\)    =    \(2^{2} \cdot 3^{5}\)
Sign: $1$
Analytic conductor: \(7.76145\)
Root analytic conductor: \(2.78593\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 972,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.022296538\)
\(L(\frac12)\) \(\approx\) \(2.022296538\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 11 T + p T^{2} \) 1.31.al
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 17 T + p T^{2} \) 1.79.ar
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 19 T + p T^{2} \) 1.97.t
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23722071309935247727298348837, −8.885100087967757116394169801081, −8.333992987459830023944164057176, −7.76727946355254846029070703935, −6.52139454380345394631337752802, −5.69511621612207163474256411692, −4.61166736570082881718643515307, −3.96932792582439025171338750491, −2.32578529085747485075021286451, −1.27516089803264212584639399656, 1.27516089803264212584639399656, 2.32578529085747485075021286451, 3.96932792582439025171338750491, 4.61166736570082881718643515307, 5.69511621612207163474256411692, 6.52139454380345394631337752802, 7.76727946355254846029070703935, 8.333992987459830023944164057176, 8.885100087967757116394169801081, 10.23722071309935247727298348837

Graph of the $Z$-function along the critical line