Properties

Label 2-94815-1.1-c1-0-40
Degree $2$
Conductor $94815$
Sign $1$
Analytic cond. $757.101$
Root an. cond. $27.5154$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 5-s + 3·8-s − 10-s + 2·11-s − 2·13-s − 16-s − 6·19-s − 20-s − 2·22-s + 25-s + 2·26-s − 10·29-s − 8·31-s − 5·32-s − 4·37-s + 6·38-s + 3·40-s − 10·41-s − 43-s − 2·44-s − 50-s + 2·52-s − 12·53-s + 2·55-s + 10·58-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.447·5-s + 1.06·8-s − 0.316·10-s + 0.603·11-s − 0.554·13-s − 1/4·16-s − 1.37·19-s − 0.223·20-s − 0.426·22-s + 1/5·25-s + 0.392·26-s − 1.85·29-s − 1.43·31-s − 0.883·32-s − 0.657·37-s + 0.973·38-s + 0.474·40-s − 1.56·41-s − 0.152·43-s − 0.301·44-s − 0.141·50-s + 0.277·52-s − 1.64·53-s + 0.269·55-s + 1.31·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 94815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 94815 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(94815\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 43\)
Sign: $1$
Analytic conductor: \(757.101\)
Root analytic conductor: \(27.5154\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 94815,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
43 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 10 T + p T^{2} \) 1.41.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.22096486431936, −13.95557662881727, −13.20694895606434, −12.72691821903453, −12.66909998067566, −11.74933359724052, −11.12130227113126, −10.87504608874639, −10.19777317604021, −9.692293896595705, −9.448818258607802, −8.785081081313354, −8.505715829697075, −7.900288595999572, −7.230219215400315, −6.882696147639809, −6.254851194660994, −5.434433877696908, −5.218101794989778, −4.407523695145440, −3.911835885211577, −3.395765091297545, −2.396396958312733, −1.731696122776196, −1.409285506797384, 0, 0, 1.409285506797384, 1.731696122776196, 2.396396958312733, 3.395765091297545, 3.911835885211577, 4.407523695145440, 5.218101794989778, 5.434433877696908, 6.254851194660994, 6.882696147639809, 7.230219215400315, 7.900288595999572, 8.505715829697075, 8.785081081313354, 9.448818258607802, 9.692293896595705, 10.19777317604021, 10.87504608874639, 11.12130227113126, 11.74933359724052, 12.66909998067566, 12.72691821903453, 13.20694895606434, 13.95557662881727, 14.22096486431936

Graph of the $Z$-function along the critical line