Properties

Label 2-94080-1.1-c1-0-46
Degree $2$
Conductor $94080$
Sign $1$
Analytic cond. $751.232$
Root an. cond. $27.4086$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s − 2·11-s + 6·13-s + 15-s + 8·17-s + 4·19-s − 4·23-s + 25-s − 27-s + 2·29-s + 4·31-s + 2·33-s − 2·37-s − 6·39-s + 4·41-s − 6·43-s − 45-s + 8·47-s − 8·51-s + 2·53-s + 2·55-s − 4·57-s − 4·59-s + 10·61-s − 6·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s − 0.603·11-s + 1.66·13-s + 0.258·15-s + 1.94·17-s + 0.917·19-s − 0.834·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s + 0.718·31-s + 0.348·33-s − 0.328·37-s − 0.960·39-s + 0.624·41-s − 0.914·43-s − 0.149·45-s + 1.16·47-s − 1.12·51-s + 0.274·53-s + 0.269·55-s − 0.529·57-s − 0.520·59-s + 1.28·61-s − 0.744·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 94080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 94080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(94080\)    =    \(2^{7} \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(751.232\)
Root analytic conductor: \(27.4086\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 94080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.462532007\)
\(L(\frac12)\) \(\approx\) \(2.462532007\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.74623181641141, −13.29418276821795, −12.88766536959379, −12.10081340921181, −11.84669258548263, −11.59781254863259, −10.68305540637161, −10.50509020959028, −10.02206385983729, −9.402842795700367, −8.774999387803953, −8.124877305127688, −7.876738275099366, −7.314872837596026, −6.676715206915648, −5.984228651297343, −5.701341063032120, −5.181304037463131, −4.475830319426476, −3.821199543340537, −3.367759766637862, −2.826001515287789, −1.794358024969759, −1.073546892977079, −0.6267068265942104, 0.6267068265942104, 1.073546892977079, 1.794358024969759, 2.826001515287789, 3.367759766637862, 3.821199543340537, 4.475830319426476, 5.181304037463131, 5.701341063032120, 5.984228651297343, 6.676715206915648, 7.314872837596026, 7.876738275099366, 8.124877305127688, 8.774999387803953, 9.402842795700367, 10.02206385983729, 10.50509020959028, 10.68305540637161, 11.59781254863259, 11.84669258548263, 12.10081340921181, 12.88766536959379, 13.29418276821795, 13.74623181641141

Graph of the $Z$-function along the critical line