L(s) = 1 | + 3-s − 2·5-s + 9-s − 4·11-s − 2·13-s − 2·15-s + 6·17-s + 4·19-s
− 25-s + 27-s + 2·29-s − 4·33-s − 6·37-s − 2·39-s − 2·41-s + 4·43-s
− 2·45-s + 6·51-s − 6·53-s + 8·55-s + 4·57-s + 12·59-s − 2·61-s + 4·65-s
− 4·67-s + 6·73-s − 75-s + ⋯
|
L(s) = 1 | + 0.577·3-s − 0.894·5-s + 1/3·9-s − 1.20·11-s − 0.554·13-s − 0.516·15-s + 1.45·17-s + 0.917·19-s
− 1/5·25-s + 0.192·27-s + 0.371·29-s − 0.696·33-s − 0.986·37-s − 0.320·39-s − 0.312·41-s + 0.609·43-s
− 0.298·45-s + 0.840·51-s − 0.824·53-s + 1.07·55-s + 0.529·57-s + 1.56·59-s − 0.256·61-s + 0.496·65-s
− 0.488·67-s + 0.702·73-s − 0.115·75-s + ⋯
|
\[\begin{aligned}
\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr
=\mathstrut & -\, \Lambda(2-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr
=\mathstrut & -\, \Lambda(1-s)
\end{aligned}
\]
\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]
where, for $p \notin \{2,\;3,\;7\}$,
\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p$ is a polynomial of degree at most 1.
| $p$ | $F_p$ |
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 6 T + p T^{2} \) |
| 79 | \( 1 + 16 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 - 14 T + p T^{2} \) |
| 97 | \( 1 + 18 T + p T^{2} \) |
show more | |
show less | |
\[\begin{aligned}
L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}
\end{aligned}\]
Imaginary part of the first few zeros on the critical line
−16.94893313330074, −16.21806523977073, −15.79118541937749, −15.45009322273932, −14.64334100782154, −14.25745228461106, −13.60150147680276, −12.94555669779658, −12.30455745477888, −11.91154810945705, −11.21722475929760, −10.38669416399315, −9.979002648294755, −9.360697556527118, −8.400771206570613, −8.047316704349056, −7.411629795633274, −7.084632846144490, −5.843666831694476, −5.252330618050711, −4.567787127119415, −3.634173949119671, −3.132954490048871, −2.368228254724345, −1.196512422822153, 0,
1.196512422822153, 2.368228254724345, 3.132954490048871, 3.634173949119671, 4.567787127119415, 5.252330618050711, 5.843666831694476, 7.084632846144490, 7.411629795633274, 8.047316704349056, 8.400771206570613, 9.360697556527118, 9.979002648294755, 10.38669416399315, 11.21722475929760, 11.91154810945705, 12.30455745477888, 12.94555669779658, 13.60150147680276, 14.25745228461106, 14.64334100782154, 15.45009322273932, 15.79118541937749, 16.21806523977073, 16.94893313330074