Properties

Label 2-93600-1.1-c1-0-119
Degree $2$
Conductor $93600$
Sign $1$
Analytic cond. $747.399$
Root an. cond. $27.3386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 6·11-s + 13-s − 6·17-s + 6·19-s + 2·23-s − 2·29-s − 2·31-s + 10·37-s − 10·41-s − 6·43-s + 4·47-s + 9·49-s − 6·53-s − 10·59-s − 14·61-s + 8·67-s − 6·71-s + 6·73-s + 24·77-s − 12·79-s − 4·83-s − 10·89-s − 4·91-s + 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.51·7-s − 1.80·11-s + 0.277·13-s − 1.45·17-s + 1.37·19-s + 0.417·23-s − 0.371·29-s − 0.359·31-s + 1.64·37-s − 1.56·41-s − 0.914·43-s + 0.583·47-s + 9/7·49-s − 0.824·53-s − 1.30·59-s − 1.79·61-s + 0.977·67-s − 0.712·71-s + 0.702·73-s + 2.73·77-s − 1.35·79-s − 0.439·83-s − 1.05·89-s − 0.419·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(93600\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(747.399\)
Root analytic conductor: \(27.3386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 93600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.06227008545153, −13.69781239610853, −13.24553247471699, −12.92253826914681, −12.60866903514677, −11.86232949707017, −11.26223459438040, −10.89396449829947, −10.28419563058074, −9.889285039776442, −9.363965336171394, −8.984867399062850, −8.258891156108736, −7.778864743697702, −7.174597143355081, −6.799755118961392, −6.078057958189529, −5.753471108100729, −5.005256066890036, −4.610311749108721, −3.753265849843517, −3.060947241426661, −2.881391944702174, −2.133011747521608, −1.209376002783732, 0, 0, 1.209376002783732, 2.133011747521608, 2.881391944702174, 3.060947241426661, 3.753265849843517, 4.610311749108721, 5.005256066890036, 5.753471108100729, 6.078057958189529, 6.799755118961392, 7.174597143355081, 7.778864743697702, 8.258891156108736, 8.984867399062850, 9.363965336171394, 9.889285039776442, 10.28419563058074, 10.89396449829947, 11.26223459438040, 11.86232949707017, 12.60866903514677, 12.92253826914681, 13.24553247471699, 13.69781239610853, 14.06227008545153

Graph of the $Z$-function along the critical line