Properties

Label 2-936-1.1-c1-0-6
Degree $2$
Conductor $936$
Sign $1$
Analytic cond. $7.47399$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s + 4·11-s − 13-s − 2·19-s + 4·23-s − 25-s + 2·31-s + 4·35-s − 10·37-s + 2·41-s + 8·43-s − 3·49-s + 12·53-s + 8·55-s + 12·59-s − 6·61-s − 2·65-s − 6·67-s − 8·71-s − 2·73-s + 8·77-s + 12·79-s − 4·83-s + 14·89-s − 2·91-s − 4·95-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s + 1.20·11-s − 0.277·13-s − 0.458·19-s + 0.834·23-s − 1/5·25-s + 0.359·31-s + 0.676·35-s − 1.64·37-s + 0.312·41-s + 1.21·43-s − 3/7·49-s + 1.64·53-s + 1.07·55-s + 1.56·59-s − 0.768·61-s − 0.248·65-s − 0.733·67-s − 0.949·71-s − 0.234·73-s + 0.911·77-s + 1.35·79-s − 0.439·83-s + 1.48·89-s − 0.209·91-s − 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(7.47399\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 936,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.114780621\)
\(L(\frac12)\) \(\approx\) \(2.114780621\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.04843529709332670174676581445, −9.153667018132570450903651076940, −8.612568759993176324608702875332, −7.44699838933626723226640796085, −6.61084334022363680034133660955, −5.73335318755003699286776095361, −4.82890466759038882574961362490, −3.80548435074655755032944611187, −2.36222722805652747794129158747, −1.32780807021178389715142739482, 1.32780807021178389715142739482, 2.36222722805652747794129158747, 3.80548435074655755032944611187, 4.82890466759038882574961362490, 5.73335318755003699286776095361, 6.61084334022363680034133660955, 7.44699838933626723226640796085, 8.612568759993176324608702875332, 9.153667018132570450903651076940, 10.04843529709332670174676581445

Graph of the $Z$-function along the critical line