Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17 $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 2·7-s − 8-s + 9-s − 10-s + 11-s − 12-s + 2·14-s − 15-s + 16-s + 17-s − 18-s + 19-s + 20-s + 2·21-s − 22-s − 4·23-s + 24-s + 25-s − 27-s − 2·28-s − 4·29-s + 30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s − 0.288·12-s + 0.534·14-s − 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 0.229·19-s + 0.223·20-s + 0.436·21-s − 0.213·22-s − 0.834·23-s + 0.204·24-s + 1/5·25-s − 0.192·27-s − 0.377·28-s − 0.742·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 86190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(86190\)    =    \(2 \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{86190} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 86190,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;13,\;17\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;13,\;17\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 \)
17 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + 9 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 5 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 2 T + p T^{2} \)
73 \( 1 - 8 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 + 17 T + p T^{2} \)
89 \( 1 + T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−14.09180128640090, −13.68284721114807, −13.00060304476284, −12.73381156021270, −11.97515639628944, −11.68357506950369, −11.28184878046169, −10.34678136595623, −10.20633441806198, −9.821441768360466, −9.257225457438026, −8.615388486915475, −8.281623565781684, −7.441823299713531, −7.011631908885135, −6.525525032670538, −6.062590567876129, −5.475045854699238, −5.041759306996868, −4.083071183124948, −3.622321940140005, −2.896020200485608, −2.177097833056497, −1.545560539648488, −0.7766646589002729, 0, 0.7766646589002729, 1.545560539648488, 2.177097833056497, 2.896020200485608, 3.622321940140005, 4.083071183124948, 5.041759306996868, 5.475045854699238, 6.062590567876129, 6.525525032670538, 7.011631908885135, 7.441823299713531, 8.281623565781684, 8.615388486915475, 9.257225457438026, 9.821441768360466, 10.20633441806198, 10.34678136595623, 11.28184878046169, 11.68357506950369, 11.97515639628944, 12.73381156021270, 13.00060304476284, 13.68284721114807, 14.09180128640090

Graph of the $Z$-function along the critical line