Properties

Label 2-83391-1.1-c1-0-12
Degree $2$
Conductor $83391$
Sign $-1$
Analytic cond. $665.880$
Root an. cond. $25.8046$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s − 5-s + 2·6-s + 7-s + 9-s + 2·10-s + 11-s − 2·12-s + 4·13-s − 2·14-s + 15-s − 4·16-s + 6·17-s − 2·18-s − 2·20-s − 21-s − 2·22-s + 4·23-s − 4·25-s − 8·26-s − 27-s + 2·28-s − 6·29-s − 2·30-s + 31-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s − 0.447·5-s + 0.816·6-s + 0.377·7-s + 1/3·9-s + 0.632·10-s + 0.301·11-s − 0.577·12-s + 1.10·13-s − 0.534·14-s + 0.258·15-s − 16-s + 1.45·17-s − 0.471·18-s − 0.447·20-s − 0.218·21-s − 0.426·22-s + 0.834·23-s − 4/5·25-s − 1.56·26-s − 0.192·27-s + 0.377·28-s − 1.11·29-s − 0.365·30-s + 0.179·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 83391 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 83391 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(83391\)    =    \(3 \cdot 7 \cdot 11 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(665.880\)
Root analytic conductor: \(25.8046\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 83391,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 - T \)
19 \( 1 \)
good2 \( 1 + p T + p T^{2} \)
5 \( 1 + T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 7 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 + 7 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 5 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 9 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 15 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 4 T + p T^{2} \)
97 \( 1 - T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.17359755584619, −13.71393327328547, −13.11707091075133, −12.65247342523838, −11.86971174238775, −11.48573344483340, −11.27836836270505, −10.63705233019549, −10.16312414904792, −9.711755426716483, −9.216300492592780, −8.579307388061949, −8.192645583593321, −7.710987961044170, −7.269441064749578, −6.647403784877611, −6.123784421888474, −5.446038812879524, −4.925952288041526, −4.191664713018786, −3.575328023469532, −3.016785244259936, −1.773549412504764, −1.509416172987726, −0.7981968384561602, 0, 0.7981968384561602, 1.509416172987726, 1.773549412504764, 3.016785244259936, 3.575328023469532, 4.191664713018786, 4.925952288041526, 5.446038812879524, 6.123784421888474, 6.647403784877611, 7.269441064749578, 7.710987961044170, 8.192645583593321, 8.579307388061949, 9.216300492592780, 9.711755426716483, 10.16312414904792, 10.63705233019549, 11.27836836270505, 11.48573344483340, 11.86971174238775, 12.65247342523838, 13.11707091075133, 13.71393327328547, 14.17359755584619

Graph of the $Z$-function along the critical line