L(s) = 1 | + 2-s + 4-s + 5-s + 7-s + 8-s + 10-s + 13-s + 14-s
+ 16-s + 6·17-s − 4·19-s + 20-s + 25-s + 26-s + 28-s − 6·29-s
+ 8·31-s + 32-s + 6·34-s + 35-s + 2·37-s − 4·38-s + 40-s − 6·41-s
+ 8·43-s − 12·47-s + 49-s + ⋯
|
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s + 0.277·13-s + 0.267·14-s
+ 1/4·16-s + 1.45·17-s − 0.917·19-s + 0.223·20-s + 1/5·25-s + 0.196·26-s + 0.188·28-s − 1.11·29-s
+ 1.43·31-s + 0.176·32-s + 1.02·34-s + 0.169·35-s + 0.328·37-s − 0.648·38-s + 0.158·40-s − 0.937·41-s
+ 1.21·43-s − 1.75·47-s + 1/7·49-s + ⋯
|
\[\begin{aligned}
\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr
=\mathstrut & \, \Lambda(2-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr
=\mathstrut & \, \Lambda(1-s)
\end{aligned}
\]
\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]
where, for $p \notin \{2,\;3,\;5,\;7,\;13\}$,
\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7,\;13\}$, then $F_p$ is a polynomial of degree at most 1.
| $p$ | $F_p$ |
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 - T \) |
good | 11 | \( 1 + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 8 T + p T^{2} \) |
| 47 | \( 1 + 12 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 - 14 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\[\begin{aligned}
L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}
\end{aligned}\]
Imaginary part of the first few zeros on the critical line
−16.72575926041306, −16.50471148776070, −15.68209535835227, −14.97746634577308, −14.64224192852968, −14.03996387430738, −13.45258200373062, −12.87690762454356, −12.36031284324927, −11.60174232953872, −11.20816996331825, −10.30882456504039, −9.979199767226055, −9.151433974447080, −8.235225086409999, −7.909292853580616, −6.898273173821143, −6.414059613373089, −5.533586084686317, −5.213511402661488, −4.225820269170789, −3.618628549133593, −2.696503368450994, −1.909213152134956, −0.9441861801424986,
0.9441861801424986, 1.909213152134956, 2.696503368450994, 3.618628549133593, 4.225820269170789, 5.213511402661488, 5.533586084686317, 6.414059613373089, 6.898273173821143, 7.909292853580616, 8.235225086409999, 9.151433974447080, 9.979199767226055, 10.30882456504039, 11.20816996331825, 11.60174232953872, 12.36031284324927, 12.87690762454356, 13.45258200373062, 14.03996387430738, 14.64224192852968, 14.97746634577308, 15.68209535835227, 16.50471148776070, 16.72575926041306