Properties

Label 2-81144-1.1-c1-0-0
Degree $2$
Conductor $81144$
Sign $1$
Analytic cond. $647.938$
Root an. cond. $25.4546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·17-s − 6·19-s − 23-s − 5·25-s + 6·29-s − 8·31-s + 2·37-s − 2·41-s − 8·43-s − 8·47-s + 2·53-s − 6·59-s − 12·67-s + 8·71-s + 6·73-s − 16·79-s + 6·83-s + 6·89-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.45·17-s − 1.37·19-s − 0.208·23-s − 25-s + 1.11·29-s − 1.43·31-s + 0.328·37-s − 0.312·41-s − 1.21·43-s − 1.16·47-s + 0.274·53-s − 0.781·59-s − 1.46·67-s + 0.949·71-s + 0.702·73-s − 1.80·79-s + 0.658·83-s + 0.635·89-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81144\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(647.938\)
Root analytic conductor: \(25.4546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4094342975\)
\(L(\frac12)\) \(\approx\) \(0.4094342975\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 6 T + p T^{2} \) 1.19.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.93392576358106, −13.42814570248104, −13.00924191495353, −12.60342231105394, −11.97488475640215, −11.36478715530318, −11.15091206065085, −10.31159098353366, −10.21407198415229, −9.348128757665285, −8.931804175008552, −8.446634254983751, −7.964328792300450, −7.319440725798321, −6.693858435247723, −6.309171995835294, −5.834273665514518, −4.909854421512116, −4.645250180536576, −3.924447232788955, −3.436648220407356, −2.539196027017422, −2.044625613806524, −1.443404994576519, −0.1970282781540039, 0.1970282781540039, 1.443404994576519, 2.044625613806524, 2.539196027017422, 3.436648220407356, 3.924447232788955, 4.645250180536576, 4.909854421512116, 5.834273665514518, 6.309171995835294, 6.693858435247723, 7.319440725798321, 7.964328792300450, 8.446634254983751, 8.931804175008552, 9.348128757665285, 10.21407198415229, 10.31159098353366, 11.15091206065085, 11.36478715530318, 11.97488475640215, 12.60342231105394, 13.00924191495353, 13.42814570248104, 13.93392576358106

Graph of the $Z$-function along the critical line