Properties

Degree 2
Conductor $ 2^{2} \cdot 7^{2} \cdot 41 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 2·9-s − 5·11-s + 2·13-s + 15-s + 3·17-s + 3·19-s − 23-s − 4·25-s − 5·27-s − 10·29-s + 11·31-s − 5·33-s + 7·37-s + 2·39-s + 41-s + 8·43-s − 2·45-s + 7·47-s + 3·51-s − 11·53-s − 5·55-s + 3·57-s + 7·59-s + 61-s + 2·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 2/3·9-s − 1.50·11-s + 0.554·13-s + 0.258·15-s + 0.727·17-s + 0.688·19-s − 0.208·23-s − 4/5·25-s − 0.962·27-s − 1.85·29-s + 1.97·31-s − 0.870·33-s + 1.15·37-s + 0.320·39-s + 0.156·41-s + 1.21·43-s − 0.298·45-s + 1.02·47-s + 0.420·51-s − 1.51·53-s − 0.674·55-s + 0.397·57-s + 0.911·59-s + 0.128·61-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 8036 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 8036 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(8036\)    =    \(2^{2} \cdot 7^{2} \cdot 41\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{8036} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 8036,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $2.283022571$
$L(\frac12)$  $\approx$  $2.283022571$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;7,\;41\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;7,\;41\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 \)
7 \( 1 \)
41 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 3 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 11 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 + 11 T + p T^{2} \)
59 \( 1 - 7 T + p T^{2} \)
61 \( 1 - T + p T^{2} \)
67 \( 1 - 7 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 5 T + p T^{2} \)
79 \( 1 - 9 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−17.12110680331818, −16.22448462347901, −15.83904047524899, −15.20737904358414, −14.61576118590750, −13.88139272394500, −13.62042874468593, −13.01723451302292, −12.36843438809988, −11.50494799693301, −11.09206619895749, −10.27886912657472, −9.723431814144552, −9.204740523652763, −8.374904828707528, −7.775931794383901, −7.530162557298022, −6.228272569310154, −5.742400013662212, −5.230350600200677, −4.197998373915762, −3.323227674006176, −2.679165375668979, −2.004122408767267, −0.7052032439268130, 0.7052032439268130, 2.004122408767267, 2.679165375668979, 3.323227674006176, 4.197998373915762, 5.230350600200677, 5.742400013662212, 6.228272569310154, 7.530162557298022, 7.775931794383901, 8.374904828707528, 9.204740523652763, 9.723431814144552, 10.27886912657472, 11.09206619895749, 11.50494799693301, 12.36843438809988, 13.01723451302292, 13.62042874468593, 13.88139272394500, 14.61576118590750, 15.20737904358414, 15.83904047524899, 16.22448462347901, 17.12110680331818

Graph of the $Z$-function along the critical line