Properties

Label 2-76050-1.1-c1-0-10
Degree $2$
Conductor $76050$
Sign $1$
Analytic cond. $607.262$
Root an. cond. $24.6426$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·7-s − 8-s + 11-s + 3·14-s + 16-s + 5·19-s − 22-s − 4·23-s − 3·28-s − 10·31-s − 32-s − 37-s − 5·38-s + 6·41-s + 2·43-s + 44-s + 4·46-s + 9·47-s + 2·49-s − 13·53-s + 3·56-s + 4·59-s − 2·61-s + 10·62-s + 64-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.13·7-s − 0.353·8-s + 0.301·11-s + 0.801·14-s + 1/4·16-s + 1.14·19-s − 0.213·22-s − 0.834·23-s − 0.566·28-s − 1.79·31-s − 0.176·32-s − 0.164·37-s − 0.811·38-s + 0.937·41-s + 0.304·43-s + 0.150·44-s + 0.589·46-s + 1.31·47-s + 2/7·49-s − 1.78·53-s + 0.400·56-s + 0.520·59-s − 0.256·61-s + 1.27·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(607.262\)
Root analytic conductor: \(24.6426\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 76050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6734564253\)
\(L(\frac12)\) \(\approx\) \(0.6734564253\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.20648081754158, −13.51511810004105, −12.91248981203961, −12.57382156192444, −12.04635877208117, −11.45060643668573, −11.08571634744128, −10.30894519218174, −10.03789279040159, −9.467057598474680, −9.018119670391663, −8.721465174759848, −7.746605161156943, −7.434199759881052, −7.042031831966866, −6.184704040056851, −5.956358123885282, −5.366726905242313, −4.454871512095661, −3.840681531536503, −3.210346527753940, −2.773980852279128, −1.889134856197872, −1.255082095827741, −0.3130426441260679, 0.3130426441260679, 1.255082095827741, 1.889134856197872, 2.773980852279128, 3.210346527753940, 3.840681531536503, 4.454871512095661, 5.366726905242313, 5.956358123885282, 6.184704040056851, 7.042031831966866, 7.434199759881052, 7.746605161156943, 8.721465174759848, 9.018119670391663, 9.467057598474680, 10.03789279040159, 10.30894519218174, 11.08571634744128, 11.45060643668573, 12.04635877208117, 12.57382156192444, 12.91248981203961, 13.51511810004105, 14.20648081754158

Graph of the $Z$-function along the critical line