Properties

Label 2-7448-1.1-c1-0-92
Degree $2$
Conductor $7448$
Sign $1$
Analytic cond. $59.4725$
Root an. cond. $7.71184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 9-s + 4·11-s − 2·13-s + 2·15-s + 7·17-s + 19-s − 3·23-s − 4·25-s − 4·27-s + 4·29-s − 4·31-s + 8·33-s + 10·37-s − 4·39-s − 9·43-s + 45-s + 4·47-s + 14·51-s + 6·53-s + 4·55-s + 2·57-s + 12·59-s + 2·61-s − 2·65-s + 16·67-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 1/3·9-s + 1.20·11-s − 0.554·13-s + 0.516·15-s + 1.69·17-s + 0.229·19-s − 0.625·23-s − 4/5·25-s − 0.769·27-s + 0.742·29-s − 0.718·31-s + 1.39·33-s + 1.64·37-s − 0.640·39-s − 1.37·43-s + 0.149·45-s + 0.583·47-s + 1.96·51-s + 0.824·53-s + 0.539·55-s + 0.264·57-s + 1.56·59-s + 0.256·61-s − 0.248·65-s + 1.95·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7448\)    =    \(2^{3} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(59.4725\)
Root analytic conductor: \(7.71184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7448,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.838669700\)
\(L(\frac12)\) \(\approx\) \(3.838669700\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 9 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 16 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 - 4 T + p T^{2} \)
97 \( 1 - 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.025401627931226792422643584924, −7.35576368051028550749728113220, −6.56908747562290589936217181967, −5.78918965685504123439080716994, −5.15668857123074570419802384411, −3.95758752330729585297373817721, −3.61004359162261295691312720452, −2.65476733358185634518476010275, −1.96150973465548707976363407788, −0.968935721867244998007328451044, 0.968935721867244998007328451044, 1.96150973465548707976363407788, 2.65476733358185634518476010275, 3.61004359162261295691312720452, 3.95758752330729585297373817721, 5.15668857123074570419802384411, 5.78918965685504123439080716994, 6.56908747562290589936217181967, 7.35576368051028550749728113220, 8.025401627931226792422643584924

Graph of the $Z$-function along the critical line