L(s) = 1 | + 3-s − 5-s − 7-s + 9-s − 11-s + 2·13-s − 15-s − 6·17-s + 4·19-s − 21-s + 8·23-s + 25-s + 27-s − 6·29-s + 8·31-s − 33-s + 35-s − 6·37-s + 2·39-s − 6·41-s + 4·43-s − 45-s − 8·47-s + 49-s − 6·51-s + 10·53-s + 55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.301·11-s + 0.554·13-s − 0.258·15-s − 1.45·17-s + 0.917·19-s − 0.218·21-s + 1.66·23-s + 1/5·25-s + 0.192·27-s − 1.11·29-s + 1.43·31-s − 0.174·33-s + 0.169·35-s − 0.986·37-s + 0.320·39-s − 0.937·41-s + 0.609·43-s − 0.149·45-s − 1.16·47-s + 1/7·49-s − 0.840·51-s + 1.37·53-s + 0.134·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 73920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.517223913\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.517223913\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + T \) |
good | 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 - 8 T + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 - 10 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 - 12 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 - 10 T + p T^{2} \) |
| 97 | \( 1 + 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.97194641616559, −13.40776027440376, −13.24542339054833, −12.79400403958467, −12.04625928882921, −11.48231772468964, −11.20669339215430, −10.51768329972616, −10.06091296787078, −9.427812922374326, −8.941985424452384, −8.501078993851538, −8.108747047856514, −7.245834463574949, −6.977769154844331, −6.520582820530161, −5.675779260555814, −5.054758716052519, −4.611619372034779, −3.700151729501040, −3.521844351912288, −2.694295054614559, −2.213406518997110, −1.260548726735749, −0.5340232100271659,
0.5340232100271659, 1.260548726735749, 2.213406518997110, 2.694295054614559, 3.521844351912288, 3.700151729501040, 4.611619372034779, 5.054758716052519, 5.675779260555814, 6.520582820530161, 6.977769154844331, 7.245834463574949, 8.108747047856514, 8.501078993851538, 8.941985424452384, 9.427812922374326, 10.06091296787078, 10.51768329972616, 11.20669339215430, 11.48231772468964, 12.04625928882921, 12.79400403958467, 13.24542339054833, 13.40776027440376, 13.97194641616559