Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 7-s − 8-s − 10-s − 11-s + 2·13-s − 14-s + 16-s − 6·17-s − 4·19-s + 20-s + 22-s − 6·23-s + 25-s − 2·26-s + 28-s + 6·29-s + 2·31-s − 32-s + 6·34-s + 35-s + 2·37-s + 4·38-s − 40-s + 12·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s − 0.353·8-s − 0.316·10-s − 0.301·11-s + 0.554·13-s − 0.267·14-s + 1/4·16-s − 1.45·17-s − 0.917·19-s + 0.223·20-s + 0.213·22-s − 1.25·23-s + 1/5·25-s − 0.392·26-s + 0.188·28-s + 1.11·29-s + 0.359·31-s − 0.176·32-s + 1.02·34-s + 0.169·35-s + 0.328·37-s + 0.648·38-s − 0.158·40-s + 1.87·41-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 6930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 6930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6930\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{6930} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 6930,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;5,\;7,\;11\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7,\;11\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 + T \)
good13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + 18 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−17.59862415020751, −17.07982086181961, −16.33707120095797, −15.73211044616070, −15.41890302965346, −14.50267185967208, −14.02764960946052, −13.33639705738793, −12.71775331496483, −12.08455228572673, −11.21796799055397, −10.86223997168004, −10.27919446176191, −9.526426979904304, −8.937378818078003, −8.295710805212396, −7.836168708492288, −6.879395609361139, −6.252735576415554, −5.786824933354323, −4.602181488446775, −4.143296596633825, −2.808969531356003, −2.202130005773945, −1.296944977976799, 0, 1.296944977976799, 2.202130005773945, 2.808969531356003, 4.143296596633825, 4.602181488446775, 5.786824933354323, 6.252735576415554, 6.879395609361139, 7.836168708492288, 8.295710805212396, 8.937378818078003, 9.526426979904304, 10.27919446176191, 10.86223997168004, 11.21796799055397, 12.08455228572673, 12.71775331496483, 13.33639705738793, 14.02764960946052, 14.50267185967208, 15.41890302965346, 15.73211044616070, 16.33707120095797, 17.07982086181961, 17.59862415020751

Graph of the $Z$-function along the critical line