Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 7-s − 8-s − 10-s + 11-s − 6·13-s + 14-s + 16-s + 6·17-s − 4·19-s + 20-s − 22-s + 4·23-s + 25-s + 6·26-s − 28-s − 2·29-s − 32-s − 6·34-s − 35-s + 2·37-s + 4·38-s − 40-s + 2·41-s − 4·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s − 0.353·8-s − 0.316·10-s + 0.301·11-s − 1.66·13-s + 0.267·14-s + 1/4·16-s + 1.45·17-s − 0.917·19-s + 0.223·20-s − 0.213·22-s + 0.834·23-s + 1/5·25-s + 1.17·26-s − 0.188·28-s − 0.371·29-s − 0.176·32-s − 1.02·34-s − 0.169·35-s + 0.328·37-s + 0.648·38-s − 0.158·40-s + 0.312·41-s − 0.609·43-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 6930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 6930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6930\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{6930} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 6930,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $1.250044086$
$L(\frac12)$  $\approx$  $1.250044086$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;5,\;7,\;11\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7,\;11\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 - T \)
good13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−17.22960962693632, −16.69893376990856, −16.38418866493363, −15.34793271728827, −14.89201763592082, −14.42215235991591, −13.72507961185242, −12.78821988209984, −12.46004584131342, −11.84386067080069, −11.06843287023892, −10.30127398546591, −9.937684299742742, −9.311900726386100, −8.798732024365842, −7.836587624615698, −7.372769506281601, −6.693208154781018, −5.942420709475580, −5.250244109352288, −4.428560904699105, −3.324224905259175, −2.613545239308238, −1.761439173096728, −0.6282180797916870, 0.6282180797916870, 1.761439173096728, 2.613545239308238, 3.324224905259175, 4.428560904699105, 5.250244109352288, 5.942420709475580, 6.693208154781018, 7.372769506281601, 7.836587624615698, 8.798732024365842, 9.311900726386100, 9.937684299742742, 10.30127398546591, 11.06843287023892, 11.84386067080069, 12.46004584131342, 12.78821988209984, 13.72507961185242, 14.42215235991591, 14.89201763592082, 15.34793271728827, 16.38418866493363, 16.69893376990856, 17.22960962693632

Graph of the $Z$-function along the critical line