L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s + 2·11-s + 12-s − 15-s + 16-s + 6·17-s + 18-s + 4·19-s − 20-s + 2·22-s + 23-s + 24-s + 25-s + 27-s − 30-s − 8·31-s + 32-s + 2·33-s + 6·34-s + 36-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.603·11-s + 0.288·12-s − 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 0.917·19-s − 0.223·20-s + 0.426·22-s + 0.208·23-s + 0.204·24-s + 1/5·25-s + 0.192·27-s − 0.182·30-s − 1.43·31-s + 0.176·32-s + 0.348·33-s + 1.02·34-s + 1/6·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.768026046\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.768026046\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 23 | \( 1 - T \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 13 | \( 1 + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 + 2 T + p T^{2} \) |
| 47 | \( 1 - 4 T + p T^{2} \) |
| 53 | \( 1 + 2 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 + 2 T + p T^{2} \) |
| 71 | \( 1 + 10 T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 - 4 T + p T^{2} \) |
| 97 | \( 1 - 16 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.70621562546456, −19.04277272523401, −18.37485871277393, −17.28946249152127, −16.42235559455691, −15.91185489885224, −14.93282363451926, −14.46621098661344, −13.80567792325415, −12.89945873226098, −12.14416373729922, −11.54174845426577, −10.50414721591216, −9.617810723188203, −8.704053618561596, −7.658878356246568, −7.098269481002394, −5.868676193038622, −4.919589624390910, −3.730464887233435, −3.119801439163997, −1.512825037902877,
1.512825037902877, 3.119801439163997, 3.730464887233435, 4.919589624390910, 5.868676193038622, 7.098269481002394, 7.658878356246568, 8.704053618561596, 9.617810723188203, 10.50414721591216, 11.54174845426577, 12.14416373729922, 12.89945873226098, 13.80567792325415, 14.46621098661344, 14.93282363451926, 15.91185489885224, 16.42235559455691, 17.28946249152127, 18.37485871277393, 19.04277272523401, 19.70621562546456