Properties

Label 2-68450-1.1-c1-0-21
Degree $2$
Conductor $68450$
Sign $-1$
Analytic cond. $546.576$
Root an. cond. $23.3789$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s + 4-s + 3·6-s − 8-s + 6·9-s − 11-s − 3·12-s + 2·13-s + 16-s + 7·17-s − 6·18-s − 5·19-s + 22-s − 6·23-s + 3·24-s − 2·26-s − 9·27-s + 4·31-s − 32-s + 3·33-s − 7·34-s + 6·36-s + 5·38-s − 6·39-s − 3·41-s + 4·43-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.73·3-s + 1/2·4-s + 1.22·6-s − 0.353·8-s + 2·9-s − 0.301·11-s − 0.866·12-s + 0.554·13-s + 1/4·16-s + 1.69·17-s − 1.41·18-s − 1.14·19-s + 0.213·22-s − 1.25·23-s + 0.612·24-s − 0.392·26-s − 1.73·27-s + 0.718·31-s − 0.176·32-s + 0.522·33-s − 1.20·34-s + 36-s + 0.811·38-s − 0.960·39-s − 0.468·41-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68450\)    =    \(2 \cdot 5^{2} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(546.576\)
Root analytic conductor: \(23.3789\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 68450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
37 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.50517485798046, −13.94448127027440, −13.06360550570344, −12.83519037027318, −12.18650325457762, −11.72474502854294, −11.53680074298835, −10.76353430038614, −10.37621485668324, −10.06578748111078, −9.637221549543675, −8.661590875602307, −8.343127681460630, −7.484733658537513, −7.348475038835073, −6.361716787942233, −6.066168376007856, −5.821471600488953, −4.966078757891964, −4.533070844073984, −3.751626311528411, −3.083289453846274, −2.044121861575033, −1.430537634638090, −0.7254513513615607, 0, 0.7254513513615607, 1.430537634638090, 2.044121861575033, 3.083289453846274, 3.751626311528411, 4.533070844073984, 4.966078757891964, 5.821471600488953, 6.066168376007856, 6.361716787942233, 7.348475038835073, 7.484733658537513, 8.343127681460630, 8.661590875602307, 9.637221549543675, 10.06578748111078, 10.37621485668324, 10.76353430038614, 11.53680074298835, 11.72474502854294, 12.18650325457762, 12.83519037027318, 13.06360550570344, 13.94448127027440, 14.50517485798046

Graph of the $Z$-function along the critical line