Properties

Label 2-68400-1.1-c1-0-126
Degree $2$
Conductor $68400$
Sign $-1$
Analytic cond. $546.176$
Root an. cond. $23.3704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 3·11-s + 4·13-s − 3·17-s − 19-s − 6·29-s + 4·31-s − 2·37-s + 6·41-s − 43-s + 3·47-s − 6·49-s + 12·53-s − 6·59-s − 61-s − 4·67-s + 6·71-s + 7·73-s − 3·77-s − 8·79-s − 12·83-s − 12·89-s − 4·91-s − 8·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.377·7-s + 0.904·11-s + 1.10·13-s − 0.727·17-s − 0.229·19-s − 1.11·29-s + 0.718·31-s − 0.328·37-s + 0.937·41-s − 0.152·43-s + 0.437·47-s − 6/7·49-s + 1.64·53-s − 0.781·59-s − 0.128·61-s − 0.488·67-s + 0.712·71-s + 0.819·73-s − 0.341·77-s − 0.900·79-s − 1.31·83-s − 1.27·89-s − 0.419·91-s − 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68400\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(546.176\)
Root analytic conductor: \(23.3704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 68400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 + T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.33534483311632, −13.88024151650778, −13.45405178030935, −12.89092460324668, −12.53685613069622, −11.81931996061841, −11.36720079032667, −10.99314193361180, −10.41256499540213, −9.798349987295019, −9.279260408447154, −8.811151649177823, −8.419772383120887, −7.731514801444130, −7.031116053530077, −6.661734102589605, −6.021783827645021, −5.709744296395153, −4.833150766845366, −4.130657949426976, −3.836121774896243, −3.118459894491392, −2.393773551399162, −1.626577422742566, −0.9860139685960952, 0, 0.9860139685960952, 1.626577422742566, 2.393773551399162, 3.118459894491392, 3.836121774896243, 4.130657949426976, 4.833150766845366, 5.709744296395153, 6.021783827645021, 6.661734102589605, 7.031116053530077, 7.731514801444130, 8.419772383120887, 8.811151649177823, 9.279260408447154, 9.798349987295019, 10.41256499540213, 10.99314193361180, 11.36720079032667, 11.81931996061841, 12.53685613069622, 12.89092460324668, 13.45405178030935, 13.88024151650778, 14.33534483311632

Graph of the $Z$-function along the critical line