Properties

Label 2-65520-1.1-c1-0-91
Degree $2$
Conductor $65520$
Sign $-1$
Analytic cond. $523.179$
Root an. cond. $22.8731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s + 4·11-s − 13-s − 6·17-s − 8·19-s − 4·23-s + 25-s + 2·29-s + 4·31-s + 35-s + 10·37-s + 2·41-s − 8·43-s + 8·47-s + 49-s − 6·53-s + 4·55-s + 8·59-s − 10·61-s − 65-s + 12·67-s − 8·71-s + 6·73-s + 4·77-s − 8·79-s − 4·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s + 1.20·11-s − 0.277·13-s − 1.45·17-s − 1.83·19-s − 0.834·23-s + 1/5·25-s + 0.371·29-s + 0.718·31-s + 0.169·35-s + 1.64·37-s + 0.312·41-s − 1.21·43-s + 1.16·47-s + 1/7·49-s − 0.824·53-s + 0.539·55-s + 1.04·59-s − 1.28·61-s − 0.124·65-s + 1.46·67-s − 0.949·71-s + 0.702·73-s + 0.455·77-s − 0.900·79-s − 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 65520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(65520\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(523.179\)
Root analytic conductor: \(22.8731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 65520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.45076427812126, −14.06649451467602, −13.43712648916285, −12.95856496311062, −12.57325466920423, −11.75477649241920, −11.59310887415537, −10.88228170702583, −10.47025735265512, −9.892593106688619, −9.253537909610125, −8.933329486873597, −8.276439829201188, −7.962148200150533, −6.968726056455402, −6.604869209938298, −6.214885699447549, −5.642678746977033, −4.707992378365140, −4.309127431356571, −4.006219004702724, −2.940877493168380, −2.244801650358576, −1.861077719332282, −0.9820166049135922, 0, 0.9820166049135922, 1.861077719332282, 2.244801650358576, 2.940877493168380, 4.006219004702724, 4.309127431356571, 4.707992378365140, 5.642678746977033, 6.214885699447549, 6.604869209938298, 6.968726056455402, 7.962148200150533, 8.276439829201188, 8.933329486873597, 9.253537909610125, 9.892593106688619, 10.47025735265512, 10.88228170702583, 11.59310887415537, 11.75477649241920, 12.57325466920423, 12.95856496311062, 13.43712648916285, 14.06649451467602, 14.45076427812126

Graph of the $Z$-function along the critical line