Properties

Label 2-645-1.1-c1-0-10
Degree $2$
Conductor $645$
Sign $1$
Analytic cond. $5.15035$
Root an. cond. $2.26943$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s + 5-s − 6-s + 4·7-s − 3·8-s + 9-s + 10-s − 2·11-s + 12-s + 2·13-s + 4·14-s − 15-s − 16-s + 18-s + 6·19-s − 20-s − 4·21-s − 2·22-s + 3·24-s + 25-s + 2·26-s − 27-s − 4·28-s + 10·29-s − 30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.447·5-s − 0.408·6-s + 1.51·7-s − 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.603·11-s + 0.288·12-s + 0.554·13-s + 1.06·14-s − 0.258·15-s − 1/4·16-s + 0.235·18-s + 1.37·19-s − 0.223·20-s − 0.872·21-s − 0.426·22-s + 0.612·24-s + 1/5·25-s + 0.392·26-s − 0.192·27-s − 0.755·28-s + 1.85·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 645 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(645\)    =    \(3 \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(5.15035\)
Root analytic conductor: \(2.26943\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 645,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.862334036\)
\(L(\frac12)\) \(\approx\) \(1.862334036\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 - T \)
43 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 10 T + p T^{2} \) 1.41.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.58910239343321954289350590528, −9.906595972704294682133625947834, −8.666178337426129024514963047000, −8.076056699728009010373918938735, −6.78753511563713634027620301812, −5.64926104374539828357492883103, −5.07780048273782775953918115396, −4.37531349869513784629265744240, −2.93359921888063408929918150795, −1.23147154777002850576678018749, 1.23147154777002850576678018749, 2.93359921888063408929918150795, 4.37531349869513784629265744240, 5.07780048273782775953918115396, 5.64926104374539828357492883103, 6.78753511563713634027620301812, 8.076056699728009010373918938735, 8.666178337426129024514963047000, 9.906595972704294682133625947834, 10.58910239343321954289350590528

Graph of the $Z$-function along the critical line