Properties

Label 2-64400-1.1-c1-0-60
Degree $2$
Conductor $64400$
Sign $-1$
Analytic cond. $514.236$
Root an. cond. $22.6767$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 7-s + 6·9-s + 11-s − 7·13-s − 3·17-s + 8·19-s − 3·21-s + 23-s + 9·27-s − 5·29-s + 2·31-s + 3·33-s + 4·37-s − 21·39-s − 8·41-s + 6·43-s + 3·47-s + 49-s − 9·51-s − 2·53-s + 24·57-s − 2·59-s − 14·61-s − 6·63-s − 4·67-s + 3·69-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.377·7-s + 2·9-s + 0.301·11-s − 1.94·13-s − 0.727·17-s + 1.83·19-s − 0.654·21-s + 0.208·23-s + 1.73·27-s − 0.928·29-s + 0.359·31-s + 0.522·33-s + 0.657·37-s − 3.36·39-s − 1.24·41-s + 0.914·43-s + 0.437·47-s + 1/7·49-s − 1.26·51-s − 0.274·53-s + 3.17·57-s − 0.260·59-s − 1.79·61-s − 0.755·63-s − 0.488·67-s + 0.361·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64400\)    =    \(2^{4} \cdot 5^{2} \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(514.236\)
Root analytic conductor: \(22.6767\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
23 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \)
11 \( 1 - T + p T^{2} \)
13 \( 1 + 7 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 2 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 3 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.37952557366795, −14.06471968380906, −13.58117553975764, −13.13513911183850, −12.60260640100281, −11.99897858504935, −11.69987556986943, −10.75793458058346, −10.23605571311841, −9.541923689803721, −9.401535290697227, −9.089704832177703, −8.262901088232129, −7.707797259195066, −7.363427865776923, −6.999976874357989, −6.226963050976408, −5.370354410984448, −4.781940519757821, −4.245627210947264, −3.521021310863870, −2.995892049311852, −2.555593279530405, −1.940648161866249, −1.155475847430924, 0, 1.155475847430924, 1.940648161866249, 2.555593279530405, 2.995892049311852, 3.521021310863870, 4.245627210947264, 4.781940519757821, 5.370354410984448, 6.226963050976408, 6.999976874357989, 7.363427865776923, 7.707797259195066, 8.262901088232129, 9.089704832177703, 9.401535290697227, 9.541923689803721, 10.23605571311841, 10.75793458058346, 11.69987556986943, 11.99897858504935, 12.60260640100281, 13.13513911183850, 13.58117553975764, 14.06471968380906, 14.37952557366795

Graph of the $Z$-function along the critical line