Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5 \cdot 11 \cdot 19 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 4·7-s − 8-s + 9-s − 10-s − 11-s + 12-s + 2·13-s + 4·14-s + 15-s + 16-s + 6·17-s − 18-s + 19-s + 20-s − 4·21-s + 22-s − 24-s + 25-s − 2·26-s + 27-s − 4·28-s − 6·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s + 0.288·12-s + 0.554·13-s + 1.06·14-s + 0.258·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 0.229·19-s + 0.223·20-s − 0.872·21-s + 0.213·22-s − 0.204·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s − 0.755·28-s − 1.11·29-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 6270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 6270 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6270\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 19\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{6270} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 6270,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $1.576214171$
$L(\frac12)$  $\approx$  $1.576214171$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;5,\;11,\;19\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;11,\;19\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 + T \)
19 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−17.41887183626988, −16.54676346042675, −16.29204813203104, −15.83723096360339, −15.01229855064140, −14.44572795421273, −13.78913115978045, −12.94691228268671, −12.81879717066874, −11.99281762897042, −11.08914786488310, −10.44403451402432, −9.804887891439407, −9.436935037993625, −8.912902578091103, −8.030006732860259, −7.416516230091524, −6.821591452181655, −5.848862544877288, −5.640306974588398, −4.147025851140992, −3.318138249548619, −2.844231899253619, −1.797782408013520, −0.7053035204547810, 0.7053035204547810, 1.797782408013520, 2.844231899253619, 3.318138249548619, 4.147025851140992, 5.640306974588398, 5.848862544877288, 6.821591452181655, 7.416516230091524, 8.030006732860259, 8.912902578091103, 9.436935037993625, 9.804887891439407, 10.44403451402432, 11.08914786488310, 11.99281762897042, 12.81879717066874, 12.94691228268671, 13.78913115978045, 14.44572795421273, 15.01229855064140, 15.83723096360339, 16.29204813203104, 16.54676346042675, 17.41887183626988

Graph of the $Z$-function along the critical line