Properties

Label 2-62400-1.1-c1-0-55
Degree $2$
Conductor $62400$
Sign $1$
Analytic cond. $498.266$
Root an. cond. $22.3218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·7-s + 9-s − 2·11-s − 13-s + 2·19-s + 4·21-s − 2·23-s + 27-s − 10·29-s − 4·31-s − 2·33-s + 6·37-s − 39-s − 6·41-s − 8·43-s + 12·47-s + 9·49-s + 14·53-s + 2·57-s + 6·59-s − 2·61-s + 4·63-s + 4·67-s − 2·69-s + 14·73-s − 8·77-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.51·7-s + 1/3·9-s − 0.603·11-s − 0.277·13-s + 0.458·19-s + 0.872·21-s − 0.417·23-s + 0.192·27-s − 1.85·29-s − 0.718·31-s − 0.348·33-s + 0.986·37-s − 0.160·39-s − 0.937·41-s − 1.21·43-s + 1.75·47-s + 9/7·49-s + 1.92·53-s + 0.264·57-s + 0.781·59-s − 0.256·61-s + 0.503·63-s + 0.488·67-s − 0.240·69-s + 1.63·73-s − 0.911·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(498.266\)
Root analytic conductor: \(22.3218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 62400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.517491509\)
\(L(\frac12)\) \(\approx\) \(3.517491509\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.39715484103410, −13.66893038516462, −13.44554475980138, −12.88231466398937, −12.11137479257000, −11.82372433020379, −11.10560104618083, −10.86902583041266, −10.12823864330449, −9.712339619387235, −8.967928123103721, −8.642186913933681, −7.953256095238052, −7.601532779414468, −7.268020674188350, −6.453607835499414, −5.548004621765014, −5.276070001857497, −4.728882114890786, −3.879786002035091, −3.621609083321018, −2.504975730840971, −2.154237056822741, −1.507697832670573, −0.6073811201347955, 0.6073811201347955, 1.507697832670573, 2.154237056822741, 2.504975730840971, 3.621609083321018, 3.879786002035091, 4.728882114890786, 5.276070001857497, 5.548004621765014, 6.453607835499414, 7.268020674188350, 7.601532779414468, 7.953256095238052, 8.642186913933681, 8.967928123103721, 9.712339619387235, 10.12823864330449, 10.86902583041266, 11.10560104618083, 11.82372433020379, 12.11137479257000, 12.88231466398937, 13.44554475980138, 13.66893038516462, 14.39715484103410

Graph of the $Z$-function along the critical line