L(s) = 1 | − 3-s + 9-s − 4·11-s + 13-s + 6·17-s − 4·19-s − 8·23-s − 27-s − 6·29-s − 8·31-s + 4·33-s − 10·37-s − 39-s − 6·41-s + 4·43-s − 7·49-s − 6·51-s − 10·53-s + 4·57-s − 4·59-s + 2·61-s − 12·67-s + 8·69-s + 16·71-s − 2·73-s − 16·79-s + 81-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 1.20·11-s + 0.277·13-s + 1.45·17-s − 0.917·19-s − 1.66·23-s − 0.192·27-s − 1.11·29-s − 1.43·31-s + 0.696·33-s − 1.64·37-s − 0.160·39-s − 0.937·41-s + 0.609·43-s − 49-s − 0.840·51-s − 1.37·53-s + 0.529·57-s − 0.520·59-s + 0.256·61-s − 1.46·67-s + 0.963·69-s + 1.89·71-s − 0.234·73-s − 1.80·79-s + 1/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 - 16 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 + 16 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 - 10 T + p T^{2} \) |
| 97 | \( 1 - 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.63878251492721, −14.33227558823778, −13.79290401782970, −13.00700346668250, −12.84535217171812, −12.24675465462160, −11.82731779617667, −11.11816891019666, −10.75002519030502, −10.17716336099288, −9.915893235339292, −9.172661379763343, −8.536082846637560, −7.918374140365309, −7.608750819728159, −7.009916830253601, −6.190470204037298, −5.853390000166195, −5.249805316160757, −4.880854185749742, −3.893106195667164, −3.594927454688478, −2.770008960744422, −1.873612893606683, −1.486051582636199, 0, 0,
1.486051582636199, 1.873612893606683, 2.770008960744422, 3.594927454688478, 3.893106195667164, 4.880854185749742, 5.249805316160757, 5.853390000166195, 6.190470204037298, 7.009916830253601, 7.608750819728159, 7.918374140365309, 8.536082846637560, 9.172661379763343, 9.915893235339292, 10.17716336099288, 10.75002519030502, 11.11816891019666, 11.82731779617667, 12.24675465462160, 12.84535217171812, 13.00700346668250, 13.79290401782970, 14.33227558823778, 14.63878251492721