Properties

Label 2-624-1.1-c1-0-8
Degree $2$
Conductor $624$
Sign $-1$
Analytic cond. $4.98266$
Root an. cond. $2.23218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·5-s + 4·7-s + 9-s + 2·11-s − 13-s + 4·15-s − 6·17-s − 4·19-s − 4·21-s − 4·23-s + 11·25-s − 27-s − 6·29-s − 8·31-s − 2·33-s − 16·35-s − 10·37-s + 39-s − 4·41-s + 4·43-s − 4·45-s + 6·47-s + 9·49-s + 6·51-s + 6·53-s − 8·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78·5-s + 1.51·7-s + 1/3·9-s + 0.603·11-s − 0.277·13-s + 1.03·15-s − 1.45·17-s − 0.917·19-s − 0.872·21-s − 0.834·23-s + 11/5·25-s − 0.192·27-s − 1.11·29-s − 1.43·31-s − 0.348·33-s − 2.70·35-s − 1.64·37-s + 0.160·39-s − 0.624·41-s + 0.609·43-s − 0.596·45-s + 0.875·47-s + 9/7·49-s + 0.840·51-s + 0.824·53-s − 1.07·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(4.98266\)
Root analytic conductor: \(2.23218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 624,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82355188850108025239299977249, −9.011032696371544011165812270443, −8.370619656211679532178861176112, −7.49238534345418766392709628204, −6.84343385941693059687900536607, −5.38848200883445772598444752149, −4.36649745619438974292890469655, −3.91612461683650343655243869043, −1.88069027517331870558643695148, 0, 1.88069027517331870558643695148, 3.91612461683650343655243869043, 4.36649745619438974292890469655, 5.38848200883445772598444752149, 6.84343385941693059687900536607, 7.49238534345418766392709628204, 8.370619656211679532178861176112, 9.011032696371544011165812270443, 10.82355188850108025239299977249

Graph of the $Z$-function along the critical line