Properties

Label 2-60990-1.1-c1-0-11
Degree $2$
Conductor $60990$
Sign $1$
Analytic cond. $487.007$
Root an. cond. $22.0682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 8-s + 9-s + 10-s + 12-s + 15-s + 16-s − 2·17-s + 18-s − 19-s + 20-s + 8·23-s + 24-s + 25-s + 27-s + 4·29-s + 30-s + 8·31-s + 32-s − 2·34-s + 36-s − 38-s + 40-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s + 0.258·15-s + 1/4·16-s − 0.485·17-s + 0.235·18-s − 0.229·19-s + 0.223·20-s + 1.66·23-s + 0.204·24-s + 1/5·25-s + 0.192·27-s + 0.742·29-s + 0.182·30-s + 1.43·31-s + 0.176·32-s − 0.342·34-s + 1/6·36-s − 0.162·38-s + 0.158·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60990\)    =    \(2 \cdot 3 \cdot 5 \cdot 19 \cdot 107\)
Sign: $1$
Analytic conductor: \(487.007\)
Root analytic conductor: \(22.0682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 60990,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.596161136\)
\(L(\frac12)\) \(\approx\) \(6.596161136\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
19 \( 1 + T \)
107 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.08402040066795, −13.91832406812876, −13.23650864134251, −13.02066923916227, −12.33054597844197, −11.97109569092847, −11.21896045692869, −10.67968132986646, −10.42905206814412, −9.541272249997146, −9.220262448470551, −8.656512510288330, −8.022169472929062, −7.487694375360364, −6.873924538370299, −6.353114704705319, −5.935002938742862, −5.066791874569693, −4.627802324767137, −4.202022422526616, −3.206857519121482, −2.912589670867999, −2.278453272081115, −1.496985415651942, −0.7638129743886316, 0.7638129743886316, 1.496985415651942, 2.278453272081115, 2.912589670867999, 3.206857519121482, 4.202022422526616, 4.627802324767137, 5.066791874569693, 5.935002938742862, 6.353114704705319, 6.873924538370299, 7.487694375360364, 8.022169472929062, 8.656512510288330, 9.220262448470551, 9.541272249997146, 10.42905206814412, 10.67968132986646, 11.21896045692869, 11.97109569092847, 12.33054597844197, 13.02066923916227, 13.23650864134251, 13.91832406812876, 14.08402040066795

Graph of the $Z$-function along the critical line