Properties

Degree 2
Conductor $ 2^{4} \cdot 7 \cdot 23^{2} $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 7-s + 9-s − 4·13-s − 6·17-s + 2·19-s + 2·21-s − 5·25-s − 4·27-s − 6·29-s + 4·31-s − 2·37-s − 8·39-s + 6·41-s + 8·43-s + 12·47-s + 49-s − 12·51-s − 6·53-s + 4·57-s + 6·59-s − 8·61-s + 63-s − 4·67-s + 2·73-s − 10·75-s + 8·79-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.377·7-s + 1/3·9-s − 1.10·13-s − 1.45·17-s + 0.458·19-s + 0.436·21-s − 25-s − 0.769·27-s − 1.11·29-s + 0.718·31-s − 0.328·37-s − 1.28·39-s + 0.937·41-s + 1.21·43-s + 1.75·47-s + 1/7·49-s − 1.68·51-s − 0.824·53-s + 0.529·57-s + 0.781·59-s − 1.02·61-s + 0.125·63-s − 0.488·67-s + 0.234·73-s − 1.15·75-s + 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(59248\)    =    \(2^{4} \cdot 7 \cdot 23^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{59248} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 59248,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $2.478830142$
$L(\frac12)$  $\approx$  $2.478830142$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;7,\;23\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;7,\;23\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
23 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \)
5 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−14.19757150255809, −13.97706364504777, −13.44113226317258, −12.93555250166910, −12.36946175288043, −11.77388907076761, −11.31090662146869, −10.75432231651000, −10.14856715594314, −9.495084802078630, −9.094257886158987, −8.837863710316671, −7.964944662527871, −7.641781498976231, −7.286140918984371, −6.485838459485742, −5.819947221511760, −5.252223583353026, −4.456328766975155, −4.097380712268812, −3.391984694418638, −2.501372577510845, −2.370433928262478, −1.614479137877921, −0.4691507420174915, 0.4691507420174915, 1.614479137877921, 2.370433928262478, 2.501372577510845, 3.391984694418638, 4.097380712268812, 4.456328766975155, 5.252223583353026, 5.819947221511760, 6.485838459485742, 7.286140918984371, 7.641781498976231, 7.964944662527871, 8.837863710316671, 9.094257886158987, 9.495084802078630, 10.14856715594314, 10.75432231651000, 11.31090662146869, 11.77388907076761, 12.36946175288043, 12.93555250166910, 13.44113226317258, 13.97706364504777, 14.19757150255809

Graph of the $Z$-function along the critical line