Properties

Label 2-57222-1.1-c1-0-22
Degree $2$
Conductor $57222$
Sign $1$
Analytic cond. $456.919$
Root an. cond. $21.3756$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s − 4·7-s + 8-s + 2·10-s + 11-s + 6·13-s − 4·14-s + 16-s + 4·19-s + 2·20-s + 22-s − 25-s + 6·26-s − 4·28-s + 2·29-s + 32-s − 8·35-s + 10·37-s + 4·38-s + 2·40-s − 10·41-s − 4·43-s + 44-s − 4·47-s + 9·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s − 1.51·7-s + 0.353·8-s + 0.632·10-s + 0.301·11-s + 1.66·13-s − 1.06·14-s + 1/4·16-s + 0.917·19-s + 0.447·20-s + 0.213·22-s − 1/5·25-s + 1.17·26-s − 0.755·28-s + 0.371·29-s + 0.176·32-s − 1.35·35-s + 1.64·37-s + 0.648·38-s + 0.316·40-s − 1.56·41-s − 0.609·43-s + 0.150·44-s − 0.583·47-s + 9/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57222 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57222 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(57222\)    =    \(2 \cdot 3^{2} \cdot 11 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(456.919\)
Root analytic conductor: \(21.3756\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 57222,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.866520743\)
\(L(\frac12)\) \(\approx\) \(4.866520743\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
11 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.15094464438377, −13.68523765382361, −13.35676457300424, −13.11060073895297, −12.47717249840290, −11.89879410911314, −11.37854666373453, −10.85449507959580, −10.16595762261972, −9.757301860306611, −9.413874771586172, −8.714921412785093, −8.154657596605943, −7.404074082608136, −6.593028484135767, −6.422402012430473, −5.979265042929856, −5.406591717267107, −4.770692554104388, −3.797363924970931, −3.546162688871516, −2.960375901991811, −2.212260364536403, −1.430486332743373, −0.6925634293655071, 0.6925634293655071, 1.430486332743373, 2.212260364536403, 2.960375901991811, 3.546162688871516, 3.797363924970931, 4.770692554104388, 5.406591717267107, 5.979265042929856, 6.422402012430473, 6.593028484135767, 7.404074082608136, 8.154657596605943, 8.714921412785093, 9.413874771586172, 9.757301860306611, 10.16595762261972, 10.85449507959580, 11.37854666373453, 11.89879410911314, 12.47717249840290, 13.11060073895297, 13.35676457300424, 13.68523765382361, 14.15094464438377

Graph of the $Z$-function along the critical line