Properties

Label 2-55488-1.1-c1-0-110
Degree $2$
Conductor $55488$
Sign $-1$
Analytic cond. $443.073$
Root an. cond. $21.0493$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 2·7-s + 9-s + 6·13-s + 2·15-s + 2·21-s − 6·23-s − 25-s + 27-s − 6·29-s − 10·31-s + 4·35-s − 2·37-s + 6·39-s − 4·43-s + 2·45-s − 8·47-s − 3·49-s − 6·53-s − 10·61-s + 2·63-s + 12·65-s + 8·67-s − 6·69-s − 10·71-s − 16·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 0.755·7-s + 1/3·9-s + 1.66·13-s + 0.516·15-s + 0.436·21-s − 1.25·23-s − 1/5·25-s + 0.192·27-s − 1.11·29-s − 1.79·31-s + 0.676·35-s − 0.328·37-s + 0.960·39-s − 0.609·43-s + 0.298·45-s − 1.16·47-s − 3/7·49-s − 0.824·53-s − 1.28·61-s + 0.251·63-s + 1.48·65-s + 0.977·67-s − 0.722·69-s − 1.18·71-s − 1.87·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55488\)    =    \(2^{6} \cdot 3 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(443.073\)
Root analytic conductor: \(21.0493\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53940765584642, −14.20755231106981, −13.61158296168224, −13.17089942411105, −12.97398726774504, −12.06459196329132, −11.53180754033149, −11.05223295777539, −10.51862085645427, −10.06210350795819, −9.284927558655438, −9.087405322708048, −8.449042907380102, −7.844076771645922, −7.567333860226776, −6.627552011460213, −6.111668465269029, −5.707802411329676, −5.037713930964686, −4.365614132737453, −3.530649606753152, −3.399840967787306, −2.137008802169747, −1.803593044004954, −1.341154403894468, 0, 1.341154403894468, 1.803593044004954, 2.137008802169747, 3.399840967787306, 3.530649606753152, 4.365614132737453, 5.037713930964686, 5.707802411329676, 6.111668465269029, 6.627552011460213, 7.567333860226776, 7.844076771645922, 8.449042907380102, 9.087405322708048, 9.284927558655438, 10.06210350795819, 10.51862085645427, 11.05223295777539, 11.53180754033149, 12.06459196329132, 12.97398726774504, 13.17089942411105, 13.61158296168224, 14.20755231106981, 14.53940765584642

Graph of the $Z$-function along the critical line