Properties

Label 2-54720-1.1-c1-0-102
Degree $2$
Conductor $54720$
Sign $-1$
Analytic cond. $436.941$
Root an. cond. $20.9031$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 3·13-s + 7·17-s + 19-s + 5·23-s + 25-s − 5·29-s + 10·31-s + 35-s − 2·37-s − 2·41-s − 6·43-s − 6·49-s + 9·53-s − 7·59-s + 4·61-s − 3·65-s − 7·67-s − 9·73-s − 10·79-s − 2·83-s − 7·85-s + 10·89-s − 3·91-s − 95-s − 18·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.832·13-s + 1.69·17-s + 0.229·19-s + 1.04·23-s + 1/5·25-s − 0.928·29-s + 1.79·31-s + 0.169·35-s − 0.328·37-s − 0.312·41-s − 0.914·43-s − 6/7·49-s + 1.23·53-s − 0.911·59-s + 0.512·61-s − 0.372·65-s − 0.855·67-s − 1.05·73-s − 1.12·79-s − 0.219·83-s − 0.759·85-s + 1.05·89-s − 0.314·91-s − 0.102·95-s − 1.82·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54720\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(436.941\)
Root analytic conductor: \(20.9031\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 54720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
19 \( 1 - T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.83097949913828, −14.09575318460476, −13.66593224905355, −13.10247698808168, −12.72278239825893, −11.95368461316990, −11.74663863096031, −11.18913587479970, −10.39982327157268, −10.19409394076261, −9.506826765792987, −8.959027678250959, −8.379999833597137, −7.901075382035816, −7.370961701526649, −6.744884974686784, −6.241251769388028, −5.537050348437431, −5.122537397433733, −4.327358195589202, −3.691342564010166, −3.160832322280699, −2.709897614506148, −1.470492407403884, −1.065984144900195, 0, 1.065984144900195, 1.470492407403884, 2.709897614506148, 3.160832322280699, 3.691342564010166, 4.327358195589202, 5.122537397433733, 5.537050348437431, 6.241251769388028, 6.744884974686784, 7.370961701526649, 7.901075382035816, 8.379999833597137, 8.959027678250959, 9.506826765792987, 10.19409394076261, 10.39982327157268, 11.18913587479970, 11.74663863096031, 11.95368461316990, 12.72278239825893, 13.10247698808168, 13.66593224905355, 14.09575318460476, 14.83097949913828

Graph of the $Z$-function along the critical line