Properties

Label 2-539-1.1-c1-0-3
Degree $2$
Conductor $539$
Sign $1$
Analytic cond. $4.30393$
Root an. cond. $2.07459$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s − 3·5-s − 2·9-s − 11-s + 2·12-s + 4·13-s + 3·15-s + 4·16-s + 6·17-s − 2·19-s + 6·20-s + 3·23-s + 4·25-s + 5·27-s − 6·29-s − 5·31-s + 33-s + 4·36-s + 11·37-s − 4·39-s − 6·41-s + 8·43-s + 2·44-s + 6·45-s − 4·48-s − 6·51-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s − 1.34·5-s − 2/3·9-s − 0.301·11-s + 0.577·12-s + 1.10·13-s + 0.774·15-s + 16-s + 1.45·17-s − 0.458·19-s + 1.34·20-s + 0.625·23-s + 4/5·25-s + 0.962·27-s − 1.11·29-s − 0.898·31-s + 0.174·33-s + 2/3·36-s + 1.80·37-s − 0.640·39-s − 0.937·41-s + 1.21·43-s + 0.301·44-s + 0.894·45-s − 0.577·48-s − 0.840·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(539\)    =    \(7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(4.30393\)
Root analytic conductor: \(2.07459\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 539,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5869444112\)
\(L(\frac12)\) \(\approx\) \(0.5869444112\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 \)
11 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.10866631247395777390781457672, −9.985286197483592787716573688901, −8.868335617542485650901555955819, −8.196526304421111242297150106130, −7.44927930218322722277526119885, −5.98016833623442124300848518324, −5.22586837194321912962810216772, −4.06364144920564711800863579864, −3.31516413382692155506861780875, −0.70813066257818517183339634810, 0.70813066257818517183339634810, 3.31516413382692155506861780875, 4.06364144920564711800863579864, 5.22586837194321912962810216772, 5.98016833623442124300848518324, 7.44927930218322722277526119885, 8.196526304421111242297150106130, 8.868335617542485650901555955819, 9.985286197483592787716573688901, 11.10866631247395777390781457672

Graph of the $Z$-function along the critical line