Properties

Label 2-53235-1.1-c1-0-27
Degree $2$
Conductor $53235$
Sign $-1$
Analytic cond. $425.083$
Root an. cond. $20.6175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 5-s + 7-s − 3·8-s − 10-s + 4·11-s + 14-s − 16-s − 6·17-s − 8·19-s + 20-s + 4·22-s + 4·23-s + 25-s − 28-s + 2·29-s + 4·31-s + 5·32-s − 6·34-s − 35-s − 10·37-s − 8·38-s + 3·40-s − 2·41-s + 8·43-s − 4·44-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.447·5-s + 0.377·7-s − 1.06·8-s − 0.316·10-s + 1.20·11-s + 0.267·14-s − 1/4·16-s − 1.45·17-s − 1.83·19-s + 0.223·20-s + 0.852·22-s + 0.834·23-s + 1/5·25-s − 0.188·28-s + 0.371·29-s + 0.718·31-s + 0.883·32-s − 1.02·34-s − 0.169·35-s − 1.64·37-s − 1.29·38-s + 0.474·40-s − 0.312·41-s + 1.21·43-s − 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 53235 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 53235 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(53235\)    =    \(3^{2} \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(425.083\)
Root analytic conductor: \(20.6175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 53235,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.50574858678673, −14.32590374222989, −13.64232567583773, −13.27224067928531, −12.61390063609577, −12.29315757069830, −11.77050052824713, −11.18647377533501, −10.72963925841582, −10.19429807511595, −9.236958315785313, −8.950941779606126, −8.605897595208677, −8.049475880313802, −7.132408644215556, −6.607480941253157, −6.300715391105631, −5.508210810179620, −4.803611581940835, −4.313476555718261, −4.082586653864797, −3.344041607509224, −2.561563185586372, −1.861552202237150, −0.8722399294079397, 0, 0.8722399294079397, 1.861552202237150, 2.561563185586372, 3.344041607509224, 4.082586653864797, 4.313476555718261, 4.803611581940835, 5.508210810179620, 6.300715391105631, 6.607480941253157, 7.132408644215556, 8.049475880313802, 8.605897595208677, 8.950941779606126, 9.236958315785313, 10.19429807511595, 10.72963925841582, 11.18647377533501, 11.77050052824713, 12.29315757069830, 12.61390063609577, 13.27224067928531, 13.64232567583773, 14.32590374222989, 14.50574858678673

Graph of the $Z$-function along the critical line