Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 19 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s + 7-s − 8-s + 9-s + 10-s + 4·11-s − 12-s + 13-s − 14-s + 15-s + 16-s + 2·17-s − 18-s + 19-s − 20-s − 21-s − 4·22-s + 8·23-s + 24-s + 25-s − 26-s − 27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.20·11-s − 0.288·12-s + 0.277·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.229·19-s − 0.223·20-s − 0.218·21-s − 0.852·22-s + 1.66·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51870 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51870 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(51870\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 19\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{51870} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 51870,\ (\ :1/2),\ 1)\)
\(L(1)\)  \(\approx\)  \(1.876428235\)
\(L(\frac12)\)  \(\approx\)  \(1.876428235\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7,\;13,\;19\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7,\;13,\;19\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 - T \)
19 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−14.76543404674489, −14.01935138252109, −13.45833947475124, −12.76139984527980, −12.19609181518113, −11.90544221761217, −11.23893146737759, −10.99833658314347, −10.47947879111533, −9.734041879495129, −9.190777543313340, −8.946138073431447, −8.053256524601163, −7.749190052790096, −7.115796531185110, −6.454421470655662, −6.208702674301455, −5.377009542150220, −4.649624998261866, −4.290458161569570, −3.317054022125845, −2.919086587495348, −1.798589099469032, −1.115773617775505, −0.6813381541089655, 0.6813381541089655, 1.115773617775505, 1.798589099469032, 2.919086587495348, 3.317054022125845, 4.290458161569570, 4.649624998261866, 5.377009542150220, 6.208702674301455, 6.454421470655662, 7.115796531185110, 7.749190052790096, 8.053256524601163, 8.946138073431447, 9.190777543313340, 9.734041879495129, 10.47947879111533, 10.99833658314347, 11.23893146737759, 11.90544221761217, 12.19609181518113, 12.76139984527980, 13.45833947475124, 14.01935138252109, 14.76543404674489

Graph of the $Z$-function along the critical line