Properties

Label 2-50400-1.1-c1-0-101
Degree $2$
Conductor $50400$
Sign $-1$
Analytic cond. $402.446$
Root an. cond. $20.0610$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 2·11-s − 6·17-s + 6·19-s + 8·23-s − 6·29-s + 6·31-s + 10·37-s − 2·41-s − 4·43-s − 8·47-s + 49-s − 12·53-s + 12·59-s − 10·61-s − 4·67-s − 2·71-s − 4·73-s + 2·77-s − 4·79-s − 12·83-s − 6·89-s − 16·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.377·7-s + 0.603·11-s − 1.45·17-s + 1.37·19-s + 1.66·23-s − 1.11·29-s + 1.07·31-s + 1.64·37-s − 0.312·41-s − 0.609·43-s − 1.16·47-s + 1/7·49-s − 1.64·53-s + 1.56·59-s − 1.28·61-s − 0.488·67-s − 0.237·71-s − 0.468·73-s + 0.227·77-s − 0.450·79-s − 1.31·83-s − 0.635·89-s − 1.62·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50400\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(402.446\)
Root analytic conductor: \(20.0610\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 50400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.67268498492094, −14.40710345702539, −13.64467836890464, −13.20034531382196, −12.94349745598557, −12.10334091675269, −11.52520619388865, −11.24908878072244, −10.88766618165646, −9.925626684580617, −9.611001939513318, −9.019114071665892, −8.584616119318802, −7.914918937532760, −7.341750395688189, −6.823445058429782, −6.310760229058009, −5.643218930480228, −4.889650220052386, −4.594089300742269, −3.843054182144941, −3.072057386535606, −2.598614994933068, −1.587312494207829, −1.116236206233067, 0, 1.116236206233067, 1.587312494207829, 2.598614994933068, 3.072057386535606, 3.843054182144941, 4.594089300742269, 4.889650220052386, 5.643218930480228, 6.310760229058009, 6.823445058429782, 7.341750395688189, 7.914918937532760, 8.584616119318802, 9.019114071665892, 9.611001939513318, 9.925626684580617, 10.88766618165646, 11.24908878072244, 11.52520619388865, 12.10334091675269, 12.94349745598557, 13.20034531382196, 13.64467836890464, 14.40710345702539, 14.67268498492094

Graph of the $Z$-function along the critical line