Properties

Label 2-220e2-1.1-c1-0-44
Degree $2$
Conductor $48400$
Sign $-1$
Analytic cond. $386.475$
Root an. cond. $19.6589$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·7-s + 9-s − 5·13-s − 3·17-s − 2·19-s − 4·21-s + 6·23-s + 4·27-s − 3·29-s − 2·31-s + 7·37-s + 10·39-s + 3·41-s + 8·43-s + 6·47-s − 3·49-s + 6·51-s + 3·53-s + 4·57-s − 10·61-s + 2·63-s − 10·67-s − 12·69-s − 12·71-s − 14·73-s − 2·79-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.755·7-s + 1/3·9-s − 1.38·13-s − 0.727·17-s − 0.458·19-s − 0.872·21-s + 1.25·23-s + 0.769·27-s − 0.557·29-s − 0.359·31-s + 1.15·37-s + 1.60·39-s + 0.468·41-s + 1.21·43-s + 0.875·47-s − 3/7·49-s + 0.840·51-s + 0.412·53-s + 0.529·57-s − 1.28·61-s + 0.251·63-s − 1.22·67-s − 1.44·69-s − 1.42·71-s − 1.63·73-s − 0.225·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48400\)    =    \(2^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(386.475\)
Root analytic conductor: \(19.6589\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 48400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 - 18 T + p T^{2} \)
89 \( 1 + 9 T + p T^{2} \)
97 \( 1 + 11 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.76748285486329, −14.56128071280550, −13.72923733094078, −13.18987796417211, −12.57775042691699, −12.25307274587526, −11.65451614502509, −11.12033932367571, −10.92168495350740, −10.32231612407444, −9.688517163989766, −8.941070358594587, −8.752908303525933, −7.632398231880693, −7.473442355030950, −6.845083787976486, −6.053557772194286, −5.758236012492613, −4.990440591671363, −4.607734104827978, −4.204471811358460, −3.013690751559558, −2.481951369134435, −1.674502034226112, −0.7899650103012130, 0, 0.7899650103012130, 1.674502034226112, 2.481951369134435, 3.013690751559558, 4.204471811358460, 4.607734104827978, 4.990440591671363, 5.758236012492613, 6.053557772194286, 6.845083787976486, 7.473442355030950, 7.632398231880693, 8.752908303525933, 8.941070358594587, 9.688517163989766, 10.32231612407444, 10.92168495350740, 11.12033932367571, 11.65451614502509, 12.25307274587526, 12.57775042691699, 13.18987796417211, 13.72923733094078, 14.56128071280550, 14.76748285486329

Graph of the $Z$-function along the critical line