Properties

Label 2-220e2-1.1-c1-0-33
Degree $2$
Conductor $48400$
Sign $-1$
Analytic cond. $386.475$
Root an. cond. $19.6589$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·7-s + 9-s − 4·17-s + 4·19-s + 4·21-s − 6·23-s + 4·27-s − 2·29-s − 8·31-s + 4·37-s + 6·41-s + 6·43-s − 2·47-s − 3·49-s + 8·51-s + 12·53-s − 8·57-s − 4·59-s − 14·61-s − 2·63-s + 10·67-s + 12·69-s − 8·71-s + 4·73-s − 8·79-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.755·7-s + 1/3·9-s − 0.970·17-s + 0.917·19-s + 0.872·21-s − 1.25·23-s + 0.769·27-s − 0.371·29-s − 1.43·31-s + 0.657·37-s + 0.937·41-s + 0.914·43-s − 0.291·47-s − 3/7·49-s + 1.12·51-s + 1.64·53-s − 1.05·57-s − 0.520·59-s − 1.79·61-s − 0.251·63-s + 1.22·67-s + 1.44·69-s − 0.949·71-s + 0.468·73-s − 0.900·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48400\)    =    \(2^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(386.475\)
Root analytic conductor: \(19.6589\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 48400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.84713006570817, −14.19752099296196, −13.82933594496185, −13.04515977770796, −12.79181124734881, −12.16609055437646, −11.75449415612089, −11.05913271962897, −10.97034395119631, −10.14076674369307, −9.731466034305177, −9.123120317131945, −8.667779326710926, −7.768989821202820, −7.324810634586470, −6.735165521217686, −6.026880143497658, −5.871233803281569, −5.222526560854363, −4.474436745469438, −3.969448156952587, −3.201228770911189, −2.489588721801794, −1.677936242987862, −0.6817185395730227, 0, 0.6817185395730227, 1.677936242987862, 2.489588721801794, 3.201228770911189, 3.969448156952587, 4.474436745469438, 5.222526560854363, 5.871233803281569, 6.026880143497658, 6.735165521217686, 7.324810634586470, 7.768989821202820, 8.667779326710926, 9.123120317131945, 9.731466034305177, 10.14076674369307, 10.97034395119631, 11.05913271962897, 11.75449415612089, 12.16609055437646, 12.79181124734881, 13.04515977770796, 13.82933594496185, 14.19752099296196, 14.84713006570817

Graph of the $Z$-function along the critical line