Properties

Label 2-220e2-1.1-c1-0-10
Degree $2$
Conductor $48400$
Sign $1$
Analytic cond. $386.475$
Root an. cond. $19.6589$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·7-s − 2·9-s + 4·13-s + 3·17-s − 5·19-s + 3·21-s + 4·23-s + 5·27-s − 5·29-s − 7·31-s + 7·37-s − 4·39-s + 8·41-s + 6·43-s + 8·47-s + 2·49-s − 3·51-s − 9·53-s + 5·57-s + 13·61-s + 6·63-s − 12·67-s − 4·69-s + 3·71-s − 6·73-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.13·7-s − 2/3·9-s + 1.10·13-s + 0.727·17-s − 1.14·19-s + 0.654·21-s + 0.834·23-s + 0.962·27-s − 0.928·29-s − 1.25·31-s + 1.15·37-s − 0.640·39-s + 1.24·41-s + 0.914·43-s + 1.16·47-s + 2/7·49-s − 0.420·51-s − 1.23·53-s + 0.662·57-s + 1.66·61-s + 0.755·63-s − 1.46·67-s − 0.481·69-s + 0.356·71-s − 0.702·73-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48400\)    =    \(2^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(386.475\)
Root analytic conductor: \(19.6589\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.119124773\)
\(L(\frac12)\) \(\approx\) \(1.119124773\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 + 7 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 15 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.51243830204792, −14.17350142480862, −13.30631212028274, −12.93586897479825, −12.65766081614657, −12.04996928241661, −11.20199451151797, −11.07015473026084, −10.61347573682968, −9.827199183877387, −9.360665108056307, −8.806900656239382, −8.411285082082144, −7.509636234823291, −7.137404989987237, −6.298109607831703, −5.900319267688757, −5.740422622513872, −4.795324923334954, −4.066138441963468, −3.510622644234674, −2.919965213015498, −2.216148982069004, −1.164228685085923, −0.4293775540454138, 0.4293775540454138, 1.164228685085923, 2.216148982069004, 2.919965213015498, 3.510622644234674, 4.066138441963468, 4.795324923334954, 5.740422622513872, 5.900319267688757, 6.298109607831703, 7.137404989987237, 7.509636234823291, 8.411285082082144, 8.806900656239382, 9.360665108056307, 9.827199183877387, 10.61347573682968, 11.07015473026084, 11.20199451151797, 12.04996928241661, 12.65766081614657, 12.93586897479825, 13.30631212028274, 14.17350142480862, 14.51243830204792

Graph of the $Z$-function along the critical line