Properties

Label 2-4800-1.1-c1-0-41
Degree $2$
Conductor $4800$
Sign $-1$
Analytic cond. $38.3281$
Root an. cond. $6.19097$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s + 9-s − 4·13-s + 8·19-s + 4·21-s + 4·23-s − 27-s + 6·29-s − 8·31-s + 4·37-s + 4·39-s + 6·41-s − 4·43-s − 4·47-s + 9·49-s + 12·53-s − 8·57-s + 6·61-s − 4·63-s − 12·67-s − 4·69-s − 16·71-s − 8·79-s + 81-s + 12·83-s − 6·87-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s + 1/3·9-s − 1.10·13-s + 1.83·19-s + 0.872·21-s + 0.834·23-s − 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.657·37-s + 0.640·39-s + 0.937·41-s − 0.609·43-s − 0.583·47-s + 9/7·49-s + 1.64·53-s − 1.05·57-s + 0.768·61-s − 0.503·63-s − 1.46·67-s − 0.481·69-s − 1.89·71-s − 0.900·79-s + 1/9·81-s + 1.31·83-s − 0.643·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4800\)    =    \(2^{6} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(38.3281\)
Root analytic conductor: \(6.19097\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59677133623291837937243958322, −7.17070682462121059859449164270, −6.53423541397788765261975868051, −5.67215216768743677169052284106, −5.15521786178474173831229388408, −4.18178925982507798742366376859, −3.21062246766300642925020082451, −2.63960111586149698091714954769, −1.12503448299216464711851523823, 0, 1.12503448299216464711851523823, 2.63960111586149698091714954769, 3.21062246766300642925020082451, 4.18178925982507798742366376859, 5.15521786178474173831229388408, 5.67215216768743677169052284106, 6.53423541397788765261975868051, 7.17070682462121059859449164270, 7.59677133623291837937243958322

Graph of the $Z$-function along the critical line