Properties

Label 2-47040-1.1-c1-0-183
Degree $2$
Conductor $47040$
Sign $-1$
Analytic cond. $375.616$
Root an. cond. $19.3808$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 9-s − 2·13-s + 15-s + 6·17-s + 4·23-s + 25-s + 27-s + 2·29-s − 8·31-s − 6·37-s − 2·39-s + 6·41-s + 12·43-s + 45-s − 12·47-s + 6·51-s + 10·53-s − 8·59-s − 10·61-s − 2·65-s − 12·67-s + 4·69-s − 8·71-s − 10·73-s + 75-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1/3·9-s − 0.554·13-s + 0.258·15-s + 1.45·17-s + 0.834·23-s + 1/5·25-s + 0.192·27-s + 0.371·29-s − 1.43·31-s − 0.986·37-s − 0.320·39-s + 0.937·41-s + 1.82·43-s + 0.149·45-s − 1.75·47-s + 0.840·51-s + 1.37·53-s − 1.04·59-s − 1.28·61-s − 0.248·65-s − 1.46·67-s + 0.481·69-s − 0.949·71-s − 1.17·73-s + 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47040\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(375.616\)
Root analytic conductor: \(19.3808\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 47040,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.70947252567169, −14.37859858394668, −13.97572791403876, −13.25526978886749, −12.88688448714120, −12.30698103925290, −11.94706925385350, −11.12165360565988, −10.63342284281648, −10.07110493075069, −9.674516523325726, −8.914140688664579, −8.838134125472228, −7.861673147674799, −7.387265097159665, −7.134213869636631, −6.156329594088578, −5.700584988800480, −5.121557601198655, −4.450804278278625, −3.785507452647063, −2.961859457999929, −2.740597529085307, −1.661456297230699, −1.233595550104768, 0, 1.233595550104768, 1.661456297230699, 2.740597529085307, 2.961859457999929, 3.785507452647063, 4.450804278278625, 5.121557601198655, 5.700584988800480, 6.156329594088578, 7.134213869636631, 7.387265097159665, 7.861673147674799, 8.838134125472228, 8.914140688664579, 9.674516523325726, 10.07110493075069, 10.63342284281648, 11.12165360565988, 11.94706925385350, 12.30698103925290, 12.88688448714120, 13.25526978886749, 13.97572791403876, 14.37859858394668, 14.70947252567169

Graph of the $Z$-function along the critical line